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Roadmap

•PARI I:
• Shallow knowledge graph embedding

•PART II:
• Bringing additional symbolic knowledge into 
knowledge graph embedding

•PART III:
• Graph neural networks
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PART I

•Shallow knowledge graph embedding
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Knowledge Graph

•What are knowledge graphs?
• Multi-relational graph data 

• (heterogeneous information network)

• Provide structured representation for semantic 
relationships between real-world entities
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A triple (h, r, t) represents a fact, ex: 
(Eiffel Tower, is located in, Paris)



Examples of KG
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General-purpose KGs

Common-sense KGs & NLP

Bio & Medical KGs

Product Graphs & E-commerce



Applications of KGs
● Foundational to knowledge-driven AI systems
● Enable many downstream applications (NLP tasks,

QA systems, etc)
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QA & Dialogue systems

Sorry, I don't know 
that one.

Computational Biology

Natural Language 
Processing

Recommendation Systems

Knowledge Graphs



Knowledge Graph Embedding

•Goal:
• Encode entities as low-dimensional vectors and 
relations as parametric algebraic operations

•Applications:
• Dialogue agents
• Question answering
• Machine comprehension
• Recommender systems
• ...
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Key Idea of KG embedding algorithms

• Define a score function for a triple: 𝑓𝑓𝑟𝑟(𝒉𝒉, 𝒕𝒕)
• According to entity and relation representation

• Define a loss function to guide the training
• E.g., an observed triple scores higher than a negative one
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Triple

Score Function



Summary of Existing Approaches
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Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in 
Complex Space (ICLR’19)



TransE: Score Function

•Relation: translating embedding

•Score function
•𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 = − 𝒉𝒉 + 𝒓𝒓 − 𝒕𝒕 = −𝑑𝑑(𝒉𝒉 + 𝒓𝒓, 𝒕𝒕)
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China

U.S.

UK

Beijing

D.C.

London

: CaptialOf

Bordes et al., Translating embeddings for modeling multi-relational data, 
NeurIPS 2013



TransE: Objective Function

•Objective Function
• Margin-based ranking loss
• 𝐿𝐿 = ∑ ℎ,𝑟𝑟,𝑡𝑡 ∈𝑆𝑆 ∑(ℎ′,𝑟𝑟,𝑡𝑡′)∈𝑆𝑆 ℎ,𝑟𝑟,𝑡𝑡

′ [𝛾𝛾 + 𝑑𝑑 𝒉𝒉 + 𝒓𝒓, 𝒕𝒕 − 𝑑𝑑(𝒉𝒉′ + 𝒓𝒓, 𝒕𝒕′)]+

• 𝑥𝑥 + denotes the positive part of 𝑥𝑥, i.e., max(0, 𝑥𝑥)
• 𝛾𝛾 > 0 denotes the margin hyperparameter

• The higher the bigger difference between positive triple and negative 
one

• 𝑆𝑆: positive triple set; 𝑆𝑆′: corrupted triple set (negative 
triples) 

•Optimization: stochastic gradient descent
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TransE: Limitations

•One-one mapping: 𝑡𝑡 = 𝜙𝜙𝑟𝑟(ℎ)
• Given (h,r), t is unique
• Given (r,t), h is unique

•Anti-symmetric
• If r(h,t) then r(t,h) is not true
• Cannot model symmetric relation, e.g., friendship

•Anti-reflexive
• r(h,h) is not true
• Cannot model reflexive relations, e.g., synonym
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DistMult

•Bilinear score function
•𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 = 𝒉𝒉𝑇𝑇𝑴𝑴𝑟𝑟𝒕𝒕

• Where 𝑴𝑴𝑟𝑟 is a diagonal matrix with diagonal vector 𝒓𝒓
• A simplification to neural tensor network (NTN)

•Objective function
• 𝐿𝐿 = ∑ ℎ,𝑟𝑟,𝑡𝑡 ∈𝑆𝑆 ∑(ℎ′,𝑟𝑟,𝑡𝑡′)∈𝑆𝑆 ℎ,𝑟𝑟,𝑡𝑡

′ [𝛾𝛾 − 𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 + 𝑓𝑓𝑟𝑟 𝒉𝒉′, 𝒕𝒕′ ]+

•Limitation
• Can only model symmetric relation

• 𝑓𝑓𝑟𝑟 𝒉𝒉, 𝒕𝒕 = 𝑓𝑓𝑟𝑟 𝒕𝒕,𝒉𝒉
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Yang et al., Embedding entities and relations for learning and inference in 
knowledge bases, ICLR 2015



PART II

• Bringing additional symbolic knowledge into 
knowledge graph embedding
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Outline

• Introduction

•Bringing First-Order Logic into Uncertain KG 
Embedding

•Bringing Ontological Concepts and Meta 
Relations into KG Embedding

•Summary & Future Work
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Limitations

•Closed-world assumption
• Observed triples are true facts

• Unseen triples are false

•Flat structure assumption
• No additional structures

• Every triple is scored using the same form of 
score function
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Solutions

•From deterministic KGs to uncertain KGs
• Bringing logic rules and probabilistic soft logic to 
handle uncertainty

• Examples of uncertain KGs

•From one-view KGs to two-view KGs
• Bringing ontological concepts and meta relations
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NELL
[Mitchell et al. 2018]



Outline
• Introduction

• Bringing First-Order Logic into Uncertain KG 
Embedding
• Chen et al., "Embedding Uncertain Knowledge 
Graphs," AAAI’19

• Bringing Ontological Concepts and Meta 
Relations into KG Embedding

• Summary & Future Work
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http://web.cs.ucla.edu/%7Eyzsun/papers/2019_AAAI_UKG.pdf


Two Types of Errors in KG

•False positive
• An observed triple is wrong, 

• e.g., (Obama, is_born_in, Kenya)

•False negative
• A true fact is missing

• e.g., (Eiffel Tower, is located in, France)
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Handling Uncertainty in Triples

•False positive errors can be alleviated by 
introducing uncertainty
• E.g., (Obama, is_born_in, Kenya): 0.01

• Fit 𝑓𝑓𝑟𝑟(𝒉𝒉, 𝒕𝒕) to uncertainty scores
19
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From score function to uncertainty score 

•Given a triple 𝑙𝑙 = ℎ, 𝑟𝑟, 𝑡𝑡 with uncertainty 
score 𝑠𝑠𝑙𝑙
• Transform 𝑓𝑓𝑟𝑟(𝒉𝒉, 𝒕𝒕) into a score in the range [0,1]

• E.g., for DisMult score function

• Where 𝜙𝜙(⋅) can be defined as
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ϕ( ) ⟶ 𝑠𝑠𝑙𝑙
ground truth 
confidence

h t

r

• Logistic function

• Bounded Rectifier

UKGE(logi)

UKGE(rect)



Handling Missing Facts

•Are unseen triples still needed?
• Yes, negative triples are still data points!

•Can we treat them as false, i.e., 𝑠𝑠𝑙𝑙 = 0, if 
triple 𝑙𝑙 is unseen?
• No, we are going to make too many mistakes!

• The potential probability of an unseen triple could be 
higher than an observed triple with low confidence 
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Bringing Logic Rules

•What are logic rules?
• Logic rule 

• (A , synonym, B) ∧ (B , synonym, C) → (A, synonym, C)

• Ground rule
• (college, synonym, university) ∧ (university , 

synonym, institute) → (college, synonym, institute)

•Why are they helpful?
• Help us to infer the score 

for unseen triples
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Probabilistic Soft Logic
• Quantify a ground rule using PSL

• Lukasiewicz t-norm, from Boolean logic to soft logic

• Probability of a ground rule 𝛾𝛾 ≡ 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 → 𝛾𝛾ℎ𝑒𝑒𝑒𝑒𝑒𝑒
• 𝑝𝑝𝛾𝛾 = 𝐼𝐼 ¬𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⋁𝛾𝛾ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = min{1,1 − 𝐼𝐼 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐼𝐼(𝛾𝛾ℎ𝑒𝑒𝑒𝑒𝑒𝑒))

• Distance to satisfaction
•

23

More publications on PSL: https://psl.linqs.org/



The Goal: Minimize Distance to Satisfaction

•Example: Consider the following ground rule
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• (college, synonym, university) ∧ (university , synonym, institute) →
(college, synonym, institute)

• Recall, 

𝑙𝑙1 confidence: 0.99 𝑙𝑙2 confidence: 0.86

𝑙𝑙3 confidence: ?

0.99 0.86

Say, our embedding model predicts it as 0.65. 
How good is this prediction?



The New Embedding Model

•For observed triples, force its score close to 
ground truth score

•For unseen triples, minimize the distance to 
satisfaction in ground rules they are involved 
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Embedding-based 
confidence function

Distance to satisfaction 
for a ground rule 𝜸𝜸, 
where 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒍𝒍 is 
involved in



Experiments

•Datasets

•Logic Rules
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(A, relatedto, B)∧(B,relatedto,C)➝(A,relatedto,C)
(A, causes, B)∧(B,causes,C)➝(A,causes,C)

(A, competeswith, B)∧(B,competeswith,C)➝(A,competeswith,C)
(A, atheletePlaysForTeam, B)∧(B, teamPlaysSports, C)➝(A, atheletePlaysSports, C)

(A, binding, B)∧(B,binding,C)➝(A,binding,C)



Baselines
• Deterministic KG embedding models, which does not 

model confidence scores explicitly
• TransE [Bordes et al. 2013)]
• DistMult [Yang et al. 2015]
• ComplEx [Trouillon et al. 2016]

• Uncertain Graph Embedding, which only provides node 
embeddings
• URGE [Hu et al. 2017]

• Two simplified version of our models
• Without Negative Sampling  (UKGE_n-)

• Can we just ignore the negative links during training?
• Without PSL  (UKGE_p-)

• Will simply treating unseen relations as 0 a good strategy?
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Relation Fact Confidence Score Prediction

•Given an unseen triple (h,r,t),  predict its 
confidence

•Metrics: MSE and MAE (× 10−2)
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Relation Fact Ranking

•Given a query (h, r, ?t), rank all entities in 
our vocabulary as tail candidates

•Metrics: normalized Discounted Cumulative 
Gain (nDCG) (linear gain and exp gain)
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Relation Fact Ranking – Case Study
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Ground Truth Predictions
Entity Score Entity Predicted Score True Score



Outline
• Introduction

• Bringing First-Order Logic into Uncertain KG 
Embedding

• Bringing Ontological Concepts and Meta 
Relations into KG Embedding
• Hao et al., "Universal Representation Learning of 
Knowledge Bases by Jointly Embedding Instances 
and Ontological Concepts,“ KDD’19

• Summary & Future Work

31

http://web.cs.ucla.edu/%7Eyzsun/papers/2019_KDD_JOIE.pdf


Why ontological view?

•Meta-Level reasoning
• What kind of relations would a scientist has?

• Works in universities or research labs
• Graduated from some university
• …

•Bring more information to instances, which 
especially benefits long-tail entities
• E.g., given Anna is a scientist, she should be close 
to other scientists in the embedding space
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Instance View and Ontological View of KG
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More on Ontological View

•Relation to Schema
• Schema provides a template or guidance on what 
types of relation could hold for a specific pair of 
entity types

• Also potentially with hierarchical taxonomy

•How to get it?
• Integrate KG with other sources

• E.g., align YAGO with ConceptNet
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Joint Embedding
• Instance embedding provide detailed and rich information 

for their corresponding ontological concepts
• Ontological concepts largely determine the embedding of 

their instances
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Cross-View Association Model

•Based on cross-view links, associate the 
instance embedding space and ontological 
embedding space
• Option 1 (Cross-View Grouping, CG): force the 
two spaces into the same space
•

• Option 2 (Cross-View Transformation, CT): 
transform instance space into ontological space
•
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Illustration of CG and CT
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Hierarchy-Aware Intra-View Model

•Base models could be any existing KG 
embedding models
• Examples: 

•Hierarchy-aware embedding
• Similar to CT, transform lower-level concepts into 
higher-level concepts
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The Joint Model

•Combine cross-view model and intra-view 
model

• Where 
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Experiments
• Datasets

• Constructed two new datasets from YAGO and 
DBpedia

• Tasks
• Triple completion
• Entity typing
• Ontology population

• Baselines: treat all links equally
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Triple Completion

•CT is better than CG
•Hierarchy needs to be handled

41



Entity Typing

•Significantly enhances the entity typing 
result
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Especially helpful for long-tail entities

•We select entities in YAGO26K-906 which 
occurs less than 8 times and entities in 
DB111K-174 which occurs less than 3 times.
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Ontology Population

•Knowledge completion at ontology view
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Outline

• Introduction

•Bringing First-Order Logic into Uncertain KG 
Embedding

•Bringing Ontological Concepts and Meta 
Relations into KG Embedding

•Summary & Future Work
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Summary

• Logic Rules and PSL can help us to better handle 
uncertainty and incompleteness of KG
• Chen et al., Embedding Uncertain Knowledge 
Graphs, AAAI’19

• Ontological View provides additional 
information for KG, where different types of links 
should be handled differently
• Hao et al., Universal Representation Learning of 
Knowledge Bases by Jointly Embedding Instances 
and Ontological Concepts, KDD’19
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Future Work

•How to automatically detect logic rules in 
KG?

•How to better leverage schema to conduct 
multi-hop reasoning?
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PART III

•Graph neural networks

48



Outline

• Introduction

•Graph Neural Networks

•Graph Neural Networks for Heterogeneous 
Graphs

•Discussions
49



Graph Analysis

•Graphs are ubiquitous
• Social networks

• Proteins

• Chemical compounds

• Program dependence graph

• ...
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Representing Nodes and Graphs

• Important for many graph related tasks
•Discrete nature makes it very challenging
•Naïve solutions

Limitations:
Extremely High-dimensional
No global structure information integrated
Permutation-variant



Even more challenging for graph representation

•Ex. Graphlet-based feature vector
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Source: 
https://haotang1995.github.io/projects/robust
_graph_level_representation_learning_using_g
raph_based_structural_attentional_learning

Source: DOI: 10.1093/bioinformatics/btv130

Requires subgraph isomorphism test: NP-hard 

https://www.researchgate.net/deref/http:/dx.doi.org/10.1093/bioinformatics/btv130?_sg%5B0%5D=c7EGji0yMAcNmX7qyvelALSHPs_AFY6uY_j1fZsQZ2r4MdBS-ltMoAizuryiUXNwMLFIn_6V4T8VftuQ6QNmrqwwSA.tAM7JBYLZHQdDZ40OzufE0T1jq2gyXBuI_prSIiB9DcdobMFPQq7ZyYPsjv1syVUs2cOW6GumNBbq15VqgX3VQ


Automatic representation Learning

•Map each node/graph into 
a low dimensional vector
•𝜙𝜙:𝑉𝑉 → 𝑅𝑅𝑑𝑑 or 𝜙𝜙:𝒢𝒢 → 𝑅𝑅𝑑𝑑

•Earlier methods
• Shallow node embedding 
methods inspired by word2vec
• DeepWalk [Perozzi, KDD’14]
• LINE [Tang, WWW’15]
• Node2Vec [Grover, KDD’16]

53
Source: DeepWalk𝝓𝝓 𝒗𝒗 = 𝑼𝑼𝑻𝑻𝒙𝒙𝒗𝒗, where U is the embedding matrix and 𝒙𝒙𝒗𝒗

is the one-hot encoding vector



Limitation of shallow embedding techniques

•Too many parameters
• Each node is associated with an embedding 
vector, which are parameters

•Not inductive
• Cannot handle new nodes

•Cannot handle node attributes
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From shallow embedding to Graph Neural 
Networks

•The embedding function (encoder) is more 
complicated
• Shallow embedding

•𝜙𝜙 𝑣𝑣 = 𝑈𝑈𝑇𝑇𝑥𝑥𝑣𝑣, where U is the embedding matrix and 
𝑥𝑥𝑣𝑣 is the one-hot encoding vector

• Graph neural networks
•𝜙𝜙 𝑣𝑣 is a neural network depending on the graph 

structure
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Outline

• Introduction

•Graph Neural Networks

•Graph Neural Networks for Heterogeneous 
Graphs

•Discussions
56



Notations

•An attributed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)
•𝑉𝑉: vertex set

•𝐸𝐸: edge set

•𝐴𝐴: adjacency matrix  

•𝑋𝑋 ∈ 𝑅𝑅𝑑𝑑0×|𝑉𝑉|: feature matrix for all the nodes

•𝑁𝑁(𝑣𝑣): neighbors of node 𝑣𝑣
•ℎ𝑣𝑣𝑙𝑙 : Representation vector of node 𝑣𝑣 at Layer 𝑙𝑙

• Note ℎ𝑣𝑣0 = 𝑥𝑥𝑣𝑣
•𝐻𝐻𝑙𝑙 ∈ 𝑅𝑅𝑑𝑑𝑙𝑙×|𝑉𝑉|: representation matrix

57



The General Architecture of GNNs

•For a node v at layer t

• A function of representations of neighbors and 
itself from previous layers
• Aggregation of neighbors
• Transformation to a different space
• Combination of neighbors and the node itself

58

representation vector 
from previous layer for 
node v 

representation vectors 
from previous layer for 
node v’s neighbors 



Compare with CNN

•Recall CNN
• Regular graph

•GNN
• Extend to irregular graph structure
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Graph Convolutional Network (GCN)

60

•Kipf and Welling, ICLR’17
• , �𝐴𝐴 = 𝐴𝐴 + 𝐼𝐼
• f: graph filter

•From a node v’s perspective

𝑾𝑾𝒌𝒌:𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒂𝒂𝒂𝒂 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 𝒌𝒌, 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏



A toy example of 2-layer GCN on a 4-node 
graph

•Computation graph

6161



GraphSAGE
• Inductive Representation Learning on Large Graphs

William L. Hamilton*, Rex Ying*, Jure Leskovec, 
NeurIPS’17

62

A more general form

https://arxiv.org/pdf/1706.02216.pdf


More about AGG

•Mean

•LSTM
•𝜋𝜋 ⋅ :𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

•Pool
•𝛾𝛾 ⋅ : Element-wise mean/max pooling of 
neighbor set 

63

= 𝛾𝛾



Message-Passing Neural Network

• Gilmer et al., 2017. Neural Message Passing for 
Quantum Chemistry. ICML.

• A general framework that subsumes most GNNs
• Can also include edge information

• Two steps
• Get messages from neighbors at step k

• Update the node latent represent based on the msg

64

e.g., Sum or MLP

e.g., LSTM, GRU

𝑨𝑨 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄:𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮, Li et al., Gated graph sequence neural networks, ICLR 2015



Graph Attention Network (GAN)

•How to decide the importance of neighbors?
• GCN: a predefined weight

• Others: no differentiation

•GAN: decide the weights using learnable 
attention
• Velickovic et al., 2018. Graph Attention 
Networks. ICLR.
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The attention mechanism

•Potentially many possible designs

66



Outline

• Introduction

•Graph Neural Networks

•Graph Neural Networks for Heterogeneous 
Graphs

•Discussions
67



What are Heterogeneous Networks? 

•Different types of nodes and edges

• Other examples:
• E-Commerce
• Knowledge graphs

68

Example: Network Schema of Academic Networks



Recap: GNNs

•Message passing framework
•

•Attention scheme

69

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ⋅ : extract a 
message from < 𝑡𝑡, 𝑒𝑒, 𝑠𝑠 >

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ : aggregate 
messages from different 
neighbors and edges

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑠𝑠 :
information from 𝑠𝑠

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠, 𝑡𝑡 : attention 
score on the edge < 𝑠𝑠, 𝑡𝑡 >



Challenges Raised by HIN

•Message passing framework
•

•Attention scheme

70

Messages are of different types!

• RGCN [ESWC’2018]: Parameterized by edge types
• HetGNN [WWW’19]: Parameterized by node types
• HAN [KDD’19]: Parameterized by meta-paths

• HAN [KDD’19]: Attention weights parameterized by meta-paths



Our Solution: Heterogeneous Graph 
Transformer (HGT), Hu et al., WWW’20

•Parameterization by Meta-Relation
• Meta-Relation: <source_type, edge_type, 
targe_type>
• E.g., <author, first_author_of, paper>, <author, second_author_of, paper>

• Parameter Sharing
• Capture the correlation between different meta-relations
• More efficient in terms of parameter space

71

W<Author, Write, Paper>
=WAuthor WWrite WPaper

W<Paper, Cite, Paper>
=WPaper WCite WPaper𝑠𝑠2𝑠𝑠1

Paper

Author Paper

CiteWrite
𝑡𝑡



Message, Attention, and Aggregation of HGT

• Heterogeneous message for an edge <s, e, t>

• Heterogeneous mutual attention on edge <s, e, t>

• Task-specific aggregation

72

Significant score for each 
meta-relation



Architecture of HGT

•Putting together
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Leaderboard #1 on Open Graph Benchmark
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Case Studies
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• Conferences’ topics changed over time.
• The relative temporal encoding can help 

capture this temporal evolution.

• HGT can implicitly extract meta paths for 
specific downstream tasks, without manual 
customization.

• Read  from



Pre-Training of Graph Neural Networks 

•Challenges on training GNNs
• Requires abundant task-specific labeled data

•What is pre-training?
• Train GNNs with self-supervision and then 
transfer learned model to downstream tasks with 
only a few labels

• Popular in NLP: e.g., BERT
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Key to the Success of Pre-Training

•Self-supervised Tasks
• No additional labels are needed

• General enough to different downstream tasks

•Existing self-supervised tasks for graphs
• Link prediction [GAE, GraphSAGE (NIPS’17)]

• Maximize mutual information between a patch 
and its super graph [DGI (ICLR’19)]

77



Our Solution: GPT-GNN (Hu et al., KDD’20)

•Pre-train GNNs via the generative task to 
generate both node attributes and edges
• Goal: find GNN parameters
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Model 𝒑𝒑(𝑮𝑮;𝜽𝜽)
• Average over different node order permutation π

• Factorize the joint probability autoregressively given π

• Factorize the conditional probability
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𝑿𝑿𝒊𝒊: attribute for node i; 𝑬𝑬𝒊𝒊: edge list for node i

X: node attributes; E: edge list for all nodes 

𝑬𝑬𝒊𝒊,¬𝒐𝒐: unobserved edges for node i; 
𝑬𝑬𝒊𝒊,𝒐𝒐: observed edges for node i

𝒑𝒑(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄|𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑)



Illustration of the Factorization
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“Pre-Training GNNs”

KDD’20

Observed links

Attribute generation

Link generation



Results
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Outline

• Introduction

•Graph Neural Networks

•Graph Neural Networks for Heterogeneous 
Graphs

•Discussions
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Open Questions

•Why GNNs work?
• Is the nonlinear transformation necessary?

• Chen et al., Are Powerful Graph Neural Nets 
Necessary? A Dissection on Graph Classification, 
arXiv:1905.04579

• A concatenate feature vector from graph 
propagation, followed by a MLP works equally 
well, and much faster!
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