REPRESENTATION LEARNING ON KNOWLEDGE GRAPHS: FROM SHALLOW EMBEDDING TO GRAPH NEURAL NETWORKS

Yizhou Sun

Department of Computer Science University of California, Los Angeles <u>yzsun@cs.ucla.edu</u>

November 8, 2020

Roadmap

• PARI I:

- Shallow knowledge graph embedding
- PART II:
 - Bringing additional symbolic knowledge into knowledge graph embedding

• PART III:

• Graph neural networks

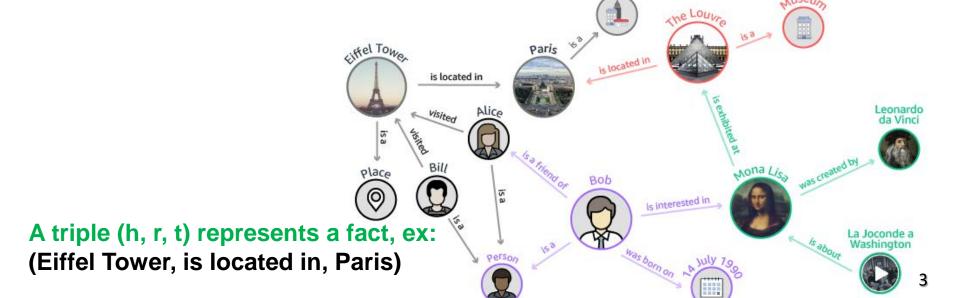
PART I

Shallow knowledge graph embedding

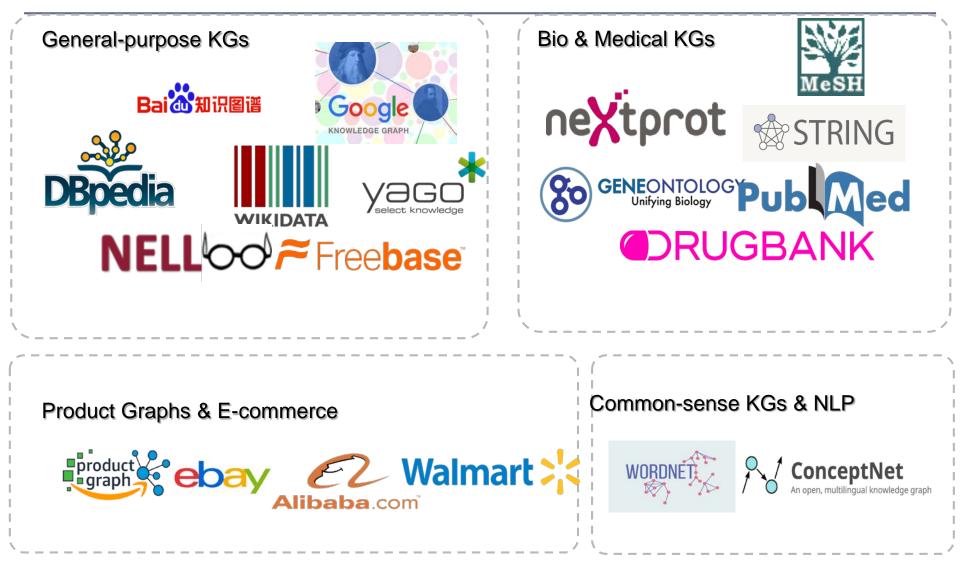
Knowledge Graph

What are knowledge graphs?

- Multi-relational graph data
 - (heterogeneous information network)
- Provide structured representation for semantic relationships between real-world entities

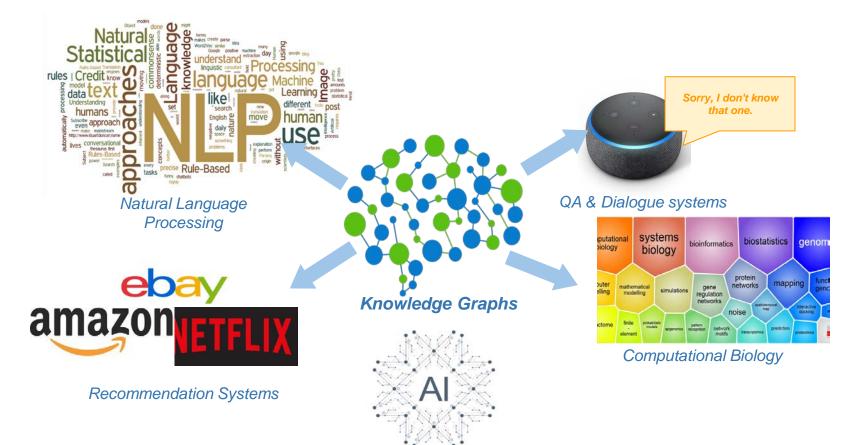


Examples of KG



Applications of KGs

- Foundational to knowledge-driven AI systems
- Enable many downstream applications (NLP tasks, QA systems, etc)



Knowledge Graph Embedding

•Goal:

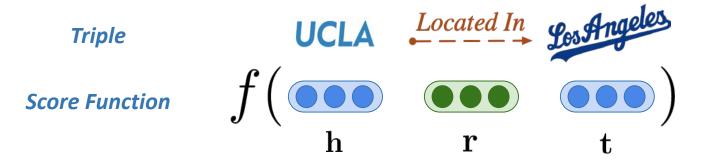
• Encode entities as low-dimensional vectors and relations as parametric algebraic operations

Applications:

- Dialogue agents
- Question answering
- Machine comprehension
- Recommender systems

Key Idea of KG embedding algorithms

- Define a score function for a triple: $f_r(h, t)$
 - According to entity and relation representation



- Define a loss function to guide the training
 - E.g., an observed triple scores higher than a negative one

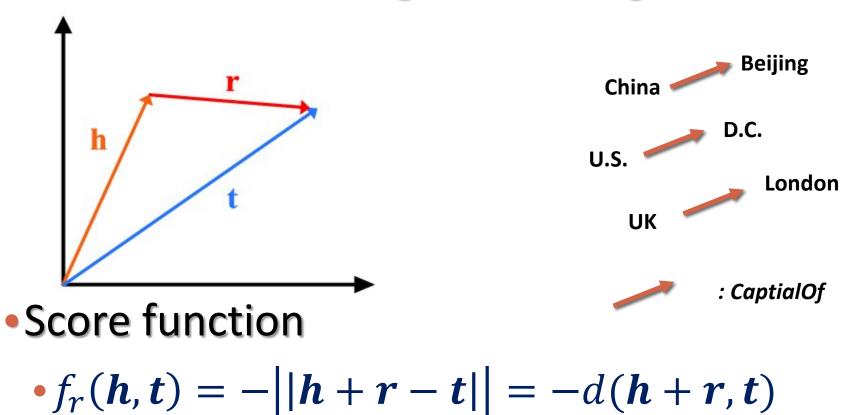
Summary of Existing Approaches

Model	Score Function		
SE (Bordes et al., 2011)	$-\left\ \boldsymbol{W}_{r,1}\mathbf{h}-\boldsymbol{W}_{r,2}\mathbf{t}\right\ $	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^k, oldsymbol{W}_{r,\cdot} \in \mathbb{R}^{k imes k}$	
TransE (Bordes et al., 2013)	$\ \mathbf{h} + \mathbf{r} - \mathbf{t}\ $	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^k$	
TransX	$\ - \ g_{r,1}(\mathbf{h}) + \mathbf{r} - g_{r,2}(\mathbf{t}) \ $	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
DistMult (Yang et al., 2014)	$\langle {f r}, {f h}, {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
ComplEx (Trouillon et al., 2016)	$\operatorname{Re}(\langle \mathbf{r}, \mathbf{h}, \overline{\mathbf{t}} angle)$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k$	
HolE (Nickel et al., 2016)	$\langle {f r}, {f h} \otimes {f t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
ConvE (Dettmers et al., 2017)	$\langle \sigma(\operatorname{vec}(\sigma([\overline{\mathbf{r}},\overline{\mathbf{h}}]*\mathbf{\Omega})) \boldsymbol{W}),\mathbf{t} angle$	$\mathbf{h},\mathbf{r},\mathbf{t}\in\mathbb{R}^k$	
RotatE	$\ \mathbf{h}\circ\mathbf{r}-\mathbf{t}\ ^2$	$\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{C}^k, r_i = 1$	

Source: Sun et al., RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space (ICLR'19)

TransE: Score Function

Relation: translating embedding



Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013

TransE: Objective Function

Objective Function

- Margin-based ranking loss
- $L = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'_{(h,r,t)}} [\gamma + d(h + r, t) d(h' + r, t')]_+$
 - $[x]_+$ denotes the positive part of x, i.e., max(0, x)
 - $\gamma > 0$ denotes the margin hyperparameter
 - The higher the bigger difference between positive triple and negative one
 - S: positive triple set; S': corrupted triple set (negative triples)
- Optimization: stochastic gradient descent

TransE: Limitations

•One-one mapping: $t = \phi_r(h)$

- Given (h,r), t is unique
- Given (r,t), h is unique

Anti-symmetric

- If r(h,t) then r(t,h) is not true
- Cannot model symmetric relation, e.g., friendship

Anti-reflexive

- •r(h,h) is not true
- Cannot model reflexive relations, e.g., synonym

DistMult

Bilinear score function

- $f_r(\boldsymbol{h}, \boldsymbol{t}) = \boldsymbol{h}^T \boldsymbol{M}_r \boldsymbol{t}$
 - ${\scriptstyle \bullet}$ Where ${\it M}_{\it r}$ is a diagonal matrix with diagonal vector ${\it r}$
- A simplification to neural tensor network (NTN)

Objective function

• $L = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'_{(h,r,t)}} [\gamma - f_r(h,t) + f_r(h',t')]_+$

Limitation

• Can only model symmetric relation

•
$$f_r(\boldsymbol{h}, \boldsymbol{t}) = f_r(\boldsymbol{t}, \boldsymbol{h})$$

Yang et al., Embedding entities and relations for learning and inference in knowledge bases, ICLR 2015

PART II

 Bringing additional symbolic knowledge into knowledge graph embedding

Outline

Bringing First-Order Logic into Uncertain KG Embedding

 Bringing Ontological Concepts and Meta Relations into KG Embedding

Summary & Future Work

Limitations

Closed-world assumption

- Observed triples are true facts
- Unseen triples are false

Flat structure assumption

- No additional structures
- Every triple is scored using the same form of score function

Solutions

From deterministic KGs to uncertain KGs

- Bringing logic rules and probabilistic soft logic to handle uncertainty
- Examples of uncertain KGs **NELL** [Mitchell et al. 2018]
- From one-view KGs to two-view KGs
 - Bringing ontological concepts and meta relations

Outline

Introduction

- Bringing First-Order Logic into Uncertain KG
 Embedding
 - Chen et al., "*Embedding Uncertain Knowledge Graphs*," AAAI'19
- Bringing Ontological Concepts and Meta Relations into KG Embedding
- Summary & Future Work

Two Types of Errors in KG

False positive

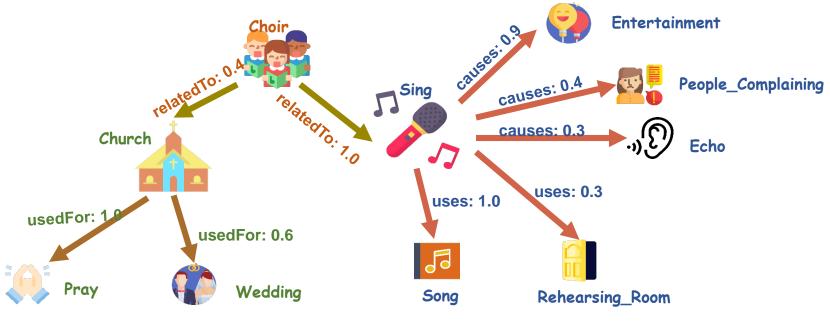
- An observed triple is wrong,
 - e.g., (Obama, is_born_in, Kenya)

False negative

- A true fact is missing
 - e.g., (Eiffel Tower, is located in, France)

Handling Uncertainty in Triples

- False positive errors can be alleviated by introducing uncertainty
 - E.g., (Obama, is_born_in, Kenya): 0.01



• Fit $f_r(h, t)$ to uncertainty scores

From score function to uncertainty score

- Given a triple l = (h, r, t) with uncertainty score s_l
 - Transform $f_r(h, t)$ into a score in the range [0,1]
 - E.g., for DisMult score function

- Where $\phi(\cdot)$ can be defined as
- Logistic function $\phi(x) = rac{1}{1+e^{-(\mathbf{w}x+\mathbf{b})}}$ UKGE(logi)
- Bounded Rectifier $\phi(x) = \min(\max(\mathbf{w}x + \mathbf{b}, 0), 1)$ UKGE(rect)

 $\Phi(\underline{\circ}, \circ) \to S_l$

ground truth confidence

Handling Missing Facts

- Are unseen triples still needed?
 - Yes, negative triples are still data points!
- Can we treat them as false, i.e., s_l = 0, if triple l is unseen?
 - No, we are going to make too many mistakes!
 - The potential probability of an unseen triple could be higher than an observed triple with low confidence



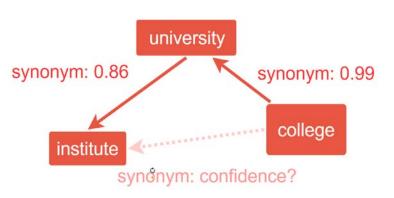
Bringing Logic Rules

What are logic rules?

- Logic rule
 - (<u>A</u>, synonym, <u>B</u>) \land (<u>B</u>, synonym, <u>C</u>) \rightarrow (<u>A</u>, synonym, <u>C</u>)
- Ground rule
 - (college, synonym, university) ∧ (university , synonym, institute) → (college, synonym, institute)

•Why are they helpful?

- Help us to infer the score
- for unseen triples



Probabilistic Soft Logic

- Quantify a ground rule using PSL
 - Lukasiewicz t-norm, from Boolean logic to soft logic

$$l_1 \wedge l_2 = \max\{0, I(l_1) + I(l_2) - 1\}$$

$$l_1 \vee l_2 = \min\{1, I(l_1) + I(l_2)\}$$

$$\neg l_1 = 1 - I(l_1)$$

- Probability of a ground rule $\gamma \equiv \gamma_{body} \rightarrow \gamma_{head}$
 - $p_{\gamma} = I(\neg \gamma_{body} \lor \gamma_{head}) = \min\{1, 1 I(\gamma_{body}) + I(\gamma_{head}))$
- Distance to satisfaction

•
$$d_{\gamma} = 1 - p_{\gamma} = \max\{0, I(\gamma_{body}) - I(\gamma_{head})\}$$

More publications on PSL: https://psl.linqs.org/

The Goal: Minimize Distance to Satisfaction

Example: Consider the following ground rule

 l_1 confidence: 0.99 l_2 confidence: 0.86 • (college, synonym, university) ∧ (university, synonym, institute) → (college, synonym, institute) l_3 confidence: ?

• Recall,
$$d_{\gamma} = 1 - p_{\gamma} = \max\{0, I(\gamma_{body}) - I(\gamma_{head})\}$$

$$\begin{aligned} d_{\gamma} &= \max\{0, \underbrace{I(l_{1} \land l_{2})}_{0.99} - I(l_{3})\} \\ &= \max\{0, \underbrace{s_{l_{1}}}_{0.99} + \underbrace{s_{l_{2}}}_{0.86} - 1 - f(l_{3})\} \\ &= \max\{0, 0.85 - f(l_{3})\} \end{aligned}$$
Say, our embedding model predicts it as 0.65.
How good is this prediction?

The New Embedding Model

- For observed triples, force its score close to ground truth score
- For unseen triples, minimize the distance to satisfaction in ground rules they are involved

$$\mathcal{J} = \sum_{l \in \mathcal{L}^+} \|f(l) - s_l\|^2 + \sum_{l \in \mathcal{L}^-} \sum_{\gamma \in \Gamma_l} |\psi_\gamma(f(l))|^2$$

Embedding-based confidence function Distance to satisfaction for a ground rule γ , where *triple l* is involved in

Experiments

Datasets

Dataset	#Ent.	#Rel.	#Rel. Facts	Avg(s)	$\operatorname{Std}(s)$
CN15k	15,000	36	241,158	0.629	0.232
NL27k	27,221	404	175,412	0.797	0.242
PPI5k	5,000	7	271,666	0.415	0.213

Logic Rules

(A, related to, B) \land (B, related to, C) \rightarrow (A, related to, C) (A, causes, B) \land (B, causes, C) \rightarrow (A, causes, C)

(A, competeswith, B) \land (B, competeswith, C) \rightarrow (A, competeswith, C) (A, atheletePlaysForTeam, B) \land (B, teamPlaysSports, C) \rightarrow (A, atheletePlaysSports, C)

(A, binding, B) \land (B, binding, C) \rightarrow (A, binding, C)

Baselines

- Deterministic KG embedding models, which does not model confidence scores explicitly
 - TransE [Bordes et al. 2013)]
 - DistMult [Yang et al. 2015]
 - ComplEx [Trouillon et al. 2016]
- Uncertain Graph Embedding, which only provides node embeddings
 - URGE [Hu et al. 2017]
- Two simplified version of our models
 - Without Negative Sampling (UKGE_n-)
 - Can we just ignore the negative links during training?
 - Without PSL (UKGE_p-)
 - Will simply treating unseen relations as 0 a good strategy?

Relation Fact Confidence Score Prediction

- Given an unseen triple (h,r,t), predict its confidence
- Metrics: MSE and MAE ($\times 10^{-2}$)

Dataset	CN	15k	NL	27k	PP	I5k
Metrics						
URGE	10.32	22.72	7.48	11.35	1.44	6.00
$UKGE_{n-}$						
$UKGE_{p-}$	9.02	20.05	2.67	7.03	0.96	4.09
$UKGE_{rect}$						
UKGE _{logi}	9.86	20.74	3.43	7.93	0.96	4.07

Relation Fact Ranking

- Given a query (h, r, <u>?t</u>), rank all entities in our vocabulary as tail candidates
- Metrics: normalized Discounted Cumulative Gain (nDCG) (linear gain and exp gain)

metrics	CN	15K	NL	27k	PP	I5k
Dataset		-		-		-
TransE						
DistMult	0.689	0.677	0.911	0.897	0.894	0.880
ComplEx	0.723	0.712	0.921	0.913	0.896	0.881
URGE						
UKGE _{n-}						
$UKGE_{p-}$	0.769	0.768	0.933	0.929	0.940	0.944
UKGE _{rect}						
UKGE _{logi}	0.789	0.788	0.955	0.956	0.970	0.969

Relation Fact Ranking – Case Study

			Ground Truth Entity Score	Entity P	Predictions redicted Score True Score
CN15k	<mark>house</mark>	usedfor	<mark>sleeping</mark> 1.0 <mark>rest</mark> 0.98		<mark>relaxing 0.86 N/A</mark> sleeping 0.85 1.0
			bed away from hom <mark>stay overnight</mark> 0.71	<mark>e</mark> 0.71	<mark>rest</mark> 0.82 0.98 <mark>hotel room 0.80 N/A</mark>
NL27k	Toyota	competeswith	Honda 1.0 Ford 1.0 BMW 0.96 General Motors 0.90)	Honda 0.94 1.0 Hyundai 0.91 0.72 <u>Chrysler 0.90 N/A</u> Nissan 0.89 0.86

Outline

Introduction

- Bringing First-Order Logic into Uncertain KG Embedding
- Bringing Ontological Concepts and Meta Relations into KG Embedding
 - Hao et al., "<u>Universal Representation Learning of</u> <u>Knowledge Bases by Jointly Embedding Instances</u> <u>and Ontological Concepts</u>," KDD'19
- Summary & Future Work

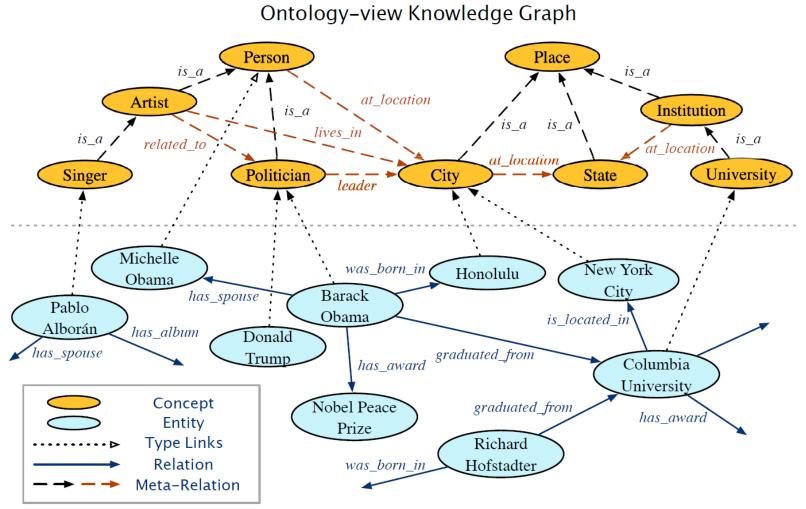
Why ontological view?

- Meta-Level reasoning
 - What kind of relations would a scientist has?
 - Works in universities or research labs
 - Graduated from some university

Bring more information to instances, which especially benefits long-tail entities

• E.g., given Anna is a scientist, she should be close to other scientists in the embedding space

Instance View and Ontological View of KG



Instance-view Knowledge Graph

More on Ontological View

Relation to Schema

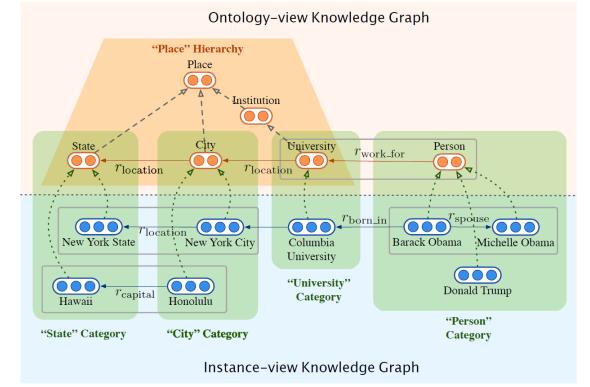
- Schema provides a template or guidance on what types of relation could hold for a specific pair of entity types
- Also potentially with hierarchical taxonomy

•How to get it?

- Integrate KG with other sources
 - E.g., align YAGO with ConceptNet

Joint Embedding

- Instance embedding provide detailed and rich information for their corresponding ontological concepts
- Ontological concepts largely determine the embedding of their instances



Cross-View Association Model

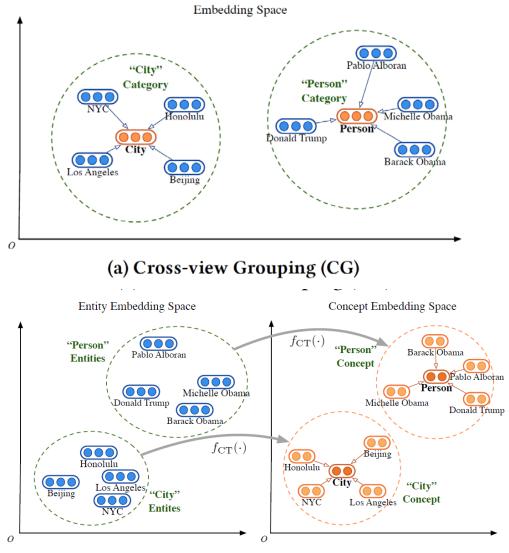
- Based on cross-view links, associate the instance embedding space and ontological embedding space
 - Option 1 (**Cross-View Grouping, CG**): force the two spaces into the same space

•
$$J_{\text{Cross}}^{\text{CG}} = \frac{1}{|\mathcal{S}|} \sum_{(e,c)\in\mathcal{S}} \left[||\mathbf{c} - \mathbf{e}||_2 - \gamma^{\text{CG}} \right]_+$$

• Option 2 (Cross-View Transformation, CT): transform instance space into ontological space

•
$$J_{\text{Cross}}^{\text{CT}} = \frac{1}{|\mathcal{S}|} \sum_{\substack{(e,c) \in \mathcal{S} \\ \wedge (e,c') \notin \mathcal{S}}} \left[\gamma^{\text{CT}} + ||\mathbf{c} - f_{\text{CT}}(\mathbf{e})||_2 - \left\| \mathbf{c'} - f_{\text{CT}}(\mathbf{e}) \right\|_2 \right]_+$$

Illustration of CG and CT



Hierarchy-Aware Intra-View Model

Base models could be any existing KG embedding models

• Examples: $f_{\text{TransE}}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||_2$ $f_{\text{Mult}}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = (\mathbf{h} \circ \mathbf{t}) \cdot \mathbf{r}$

 $f_{\text{HolE}}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = (\mathbf{h} \star \mathbf{t}) \cdot \mathbf{r}$

Hierarchy-aware embedding

• Similar to CT, transform lower-level concepts into higher-level concepts

$$g_{\text{HA}}(\mathbf{c}_h) = \sigma(\mathbf{W}_{\text{HA}} \cdot \mathbf{c}_l + \mathbf{b}_{\text{HA}})$$

The Joint Model

Combine cross-view model and intra-view model

$$J = J_{\text{Intra}} + \omega \cdot J_{\text{Cross}}$$

• Where
$$J_{\text{Intra}} = J_{\text{Intra}}^{\mathcal{G}_{I}} + \alpha_1 \cdot J_{\text{Intra}}^{\mathcal{G}_{O} \setminus \mathcal{T}} + \alpha_2 \cdot J_{\text{Intra}}^{\text{HA}}$$

Experiments

Datasets

Constructed two new datasets from YAGO and DBpedia

Dataset	Instance Graph \mathcal{G}_I			Ot	Type Links S			
Dataset	#Entities	#Relations	#Triples	#Concepts	#Meta-relations	#Triples	Type Links O	
YAGO26K-906	26,078	34	390,738	906	30	8,962	9,962	
DB111K-174	111,762	305	863,643	174	20	763	99,748	

Tasks

- Triple completion
- Entity typing
- Ontology population
- Baselines: treat all links equally

Triple Completion

CT is better than CG

Hierarchy needs to be handled

Datasets		YAGO2	26K-906			DB1			11K-174			
Graphs	\mathcal{G}_I KG Completion			\mathcal{G}_O KG Completion			\mathcal{G}_I KG Completion			\mathcal{G}_O KG Completion		
Metrics	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10	MRR	H@1	H@10
TransE (base)	0.195	14.09	34.51	0.145	12.29	20.59	0.327	22.26	49.01	0.313	23.22	46.91
TransE (all)	0.187	13.73	35.05	0.189	14.72	24.36	0.318	22.70	48.12	0.539	47.90	61.84
TransC	0.252	15.71	37.79	-	_	-	0.359	24.83	49.31	-	_	_
JOIE-TransE-CG	0.264	16.38	35.45	0.189	11.16	29.44	0.394	27.75	51.20	0.598	53.84	71.79
JOIE-TransE-CT	0.292	18.72	44.14	0.240	14.49	33.47	0.443	32.10	67.89	0.622	<u>58.10</u>	72.97
JOIE-HATransE-CT	0.306	18.62	51.72	<u>0.263</u>	16.72	<u>38.46</u>	<u>0.473</u>	<u>33.79</u>	71.37	0.591	52.07	<u>79.65</u>
DistMult (base)	0.253	22.91	28.76	0.197	17.72	25.08	0.265	25.95	27.63	0.235	15.18	29.11
DistMult (all)	0.288	24.06	31.24	0.156	14.32	16.54	0.280	27.24	29.70	0.501	45.52	64.73
JOIE-Mult-CG	0.274	18.80	37.45	0.198	11.16	27.91	0.320	23.44	49.49	0.532	46.15	68.91
JOIE-Mult-CT	0.309	20.40	46.15	0.207	14.71	30.43	0.404	26.55	60.86	0.563	50.50	71.62
JOIE-HAMult-CT	0.296	19.39	45.48	0.202	13.72	31.10	0.369	24.82	55.86	0.521	38.46	77.25
HolE (base)	0.265	25.90	28.31	0.192	18.70	20.29	0.301	29.24	31.51	0.227	18.91	32.83
HolE (all)	0.252	24.22	26.56	0.138	11.29	14.43	0.295	28.70	30.32	0.432	38.80	56.05
JOIE-HolE-CG	0.253	18.75	34.11	0.167	13.04	22.33	0.361	24.13	46.15	0.469	41.89	62.16
JOIE-HolE-CT	0.313	20.40	47.80	0.229	<u>20.85</u>	28.42	0.425	29.09	66.88	0.514	43.24	69.23
JOIE-HAHolE-CT	<u>0.327</u>	22.42	<u>52.41</u>	0.236	16.72	30.96	0.464	33.11	69.56	0.503	40.80	71.03

Entity Typing

Significantly enhances the entity typing result

			-		~		
Datasets	YAGO26K-906			DB111K-174			
Metrics	MRR	Acc.	Hit@3	MRR	Acc.	Hit@3	
TransE	0.144	7.32	35.26	0.503	43.67	60.78	
MTransE	0.689	60.87	77.64	0.672	59.87	81.32	
JOIE-TransE-CG	0.829	72.63	93.35	0.828	70.58	95.11	
JOIE-TransE-CT	0.843	75.31	93.18	0.846	74.41	94.53	
JOIE-HATransE-CT	<u>0.897</u>	<u>85.60</u>	<u>95.91</u>	<u>0.857</u>	75.55	<u>95.91</u>	
DistMult	0.411	36.07	55.32	0.551	49.83	68.01	
JOIE-Mult-CG	0.762	62.62	87.82	0.764	60.83	91.80	
JOIE-Mult-CT	0.805	70.83	89.25	0.791	65.30	93.47	
JOIE-HAMult-CT	0.865	81.63	91.83	0.778	69.38	85.71	
HolE	0.395	34.83	54.79	0.504	44.75	65.38	
JOIE-HolE-CG	0.777	65.30	87.89	0.784	66.75	89.37	
JOIE-HolE-CT	0.813	72.27	88.71	0.805	68.84	91.22	
JOIE-HAHolE-CT	0.888	83.67	93.87	0.808	72.51	89.79	

Especially helpful for long-tail entities

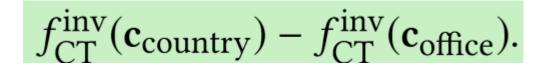
 We select entities in YAGO26K-906 which occurs less than 8 times and entities in DB111K-174 which occurs less than 3 times.

		-				~	
Datasets	YA	GO26K	-906	DB111K-174			
Metrics	MRR	Acc.	Hit@3	MRR	Acc.	Hit@3	
DistMult	0.156	10.89	25.33	0.219	16.48	33.71	
MTransE	0.526	46.45	67.25	0.505	46.67	64.36	
JOIE-TransE-CG	0.708	59.97	79.80	0.741	64.45	83.05	
JOIE-TransE-CT	0.737	62.05	82.60	0.758	66.35	83.80	
JOIE-HATransE-CT	0.802	69.66	87.75	0.760	67.34	89.79	

Ontology Population

Knowledge completion at ontology view

Query	Top 5 Populated Triples with distances					
	scientist, <i>graduated from</i> , university (0.499) scientist, <i>isLeaderOf</i> , university (1.082) scientist, <i>isKnownFor</i> , university (1.098)					
(scientist,?r,						
university)	scientist, <i>created</i> , university (1.119)					
	scientist, <i>livesIn</i> , university (1.141)					
	boxer, <i>playsFor</i> , club (1.467)					
(hower 2m	boxer, <i>isAffiliatedTo</i> , club (1.474)					
(boxer, ?r, olub)	boxer, <i>worksAt</i> , club (1.479)					
club)	boxer, graduatedFrom, club (1.497)					
	boxer, <i>isConnectedTo</i> , club (1.552)					



Outline

Introduction

 Bringing First-Order Logic into Uncertain KG Embedding

- Bringing Ontological Concepts and Meta Relations into KG Embedding
- Summary & Future Work

Summary

- Logic Rules and PSL can help us to better handle uncertainty and incompleteness of KG
 - Chen et al., Embedding Uncertain Knowledge Graphs, AAAI'19
- Ontological View provides additional information for KG, where different types of links should be handled differently
 - Hao et al., Universal Representation Learning of Knowledge Bases by Jointly Embedding Instances and Ontological Concepts, KDD'19

Future Work

 How to automatically detect logic rules in KG?

 How to better leverage schema to conduct multi-hop reasoning?

PART III

Graph neural networks

Outline

Graph Neural Networks

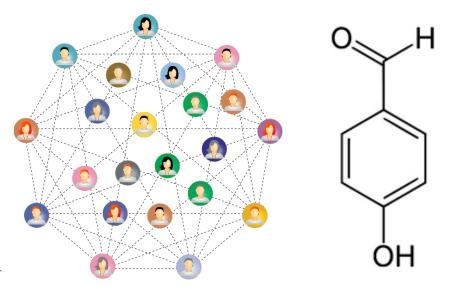
Graph Neural Networks for Heterogeneous Graphs

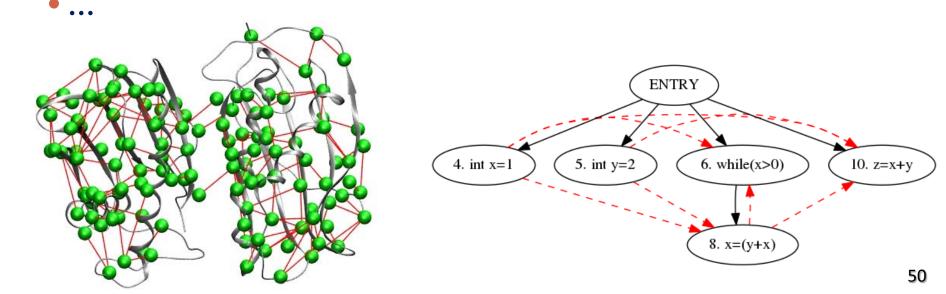
Discussions

Graph Analysis

Graphs are ubiquitous

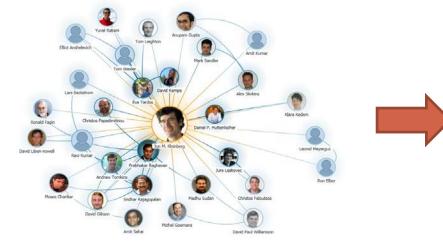
- Social networks
- Proteins
- Chemical compounds
- Program dependence graph

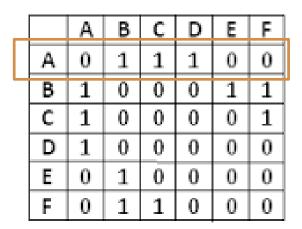




Representing Nodes and Graphs

- Important for many graph related tasks
- Discrete nature makes it very challenging
- Naïve solutions



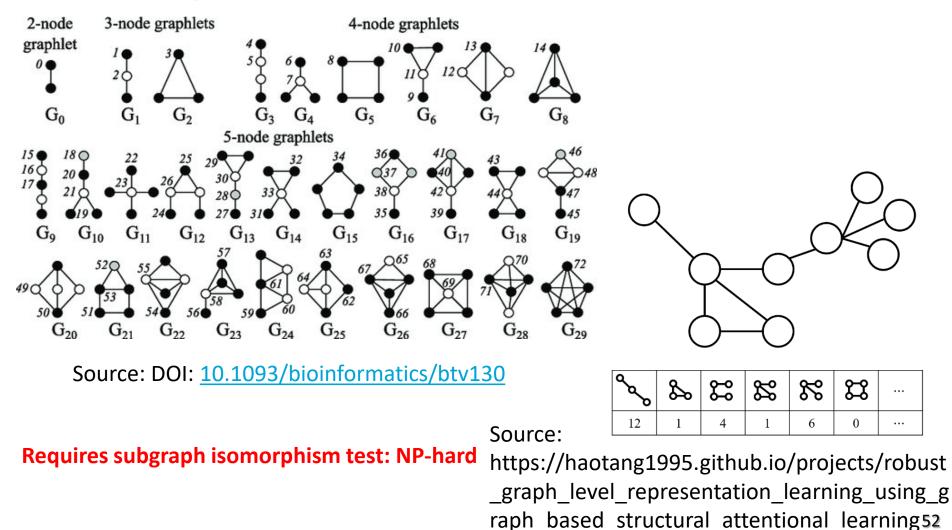


Limitations:

Extremely High-dimensional No global structure information integrated Permutation-variant

Even more challenging for graph representation

Ex. Graphlet-based feature vector



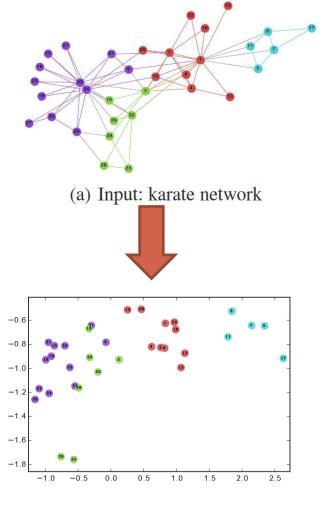
Automatic representation Learning

- Map each node/graph into a low dimensional vector
 - $\bullet \phi \colon V \to R^d \text{ or } \phi \colon \mathcal{G} \to R^d$

Earlier methods

- Shallow node embedding methods inspired by word2vec
 - DeepWalk [Perozzi, KDD'14]
 - LINE [Tang, WWW'15]
 - Node2Vec [Grover, KDD'16]

 $\phi(v) = U^T x_v$, where U is the embedding matrix and x_v is the one-hot encoding vector



(b) Output: representations

Source: DeepWalk

Limitation of shallow embedding techniques

Too many parameters

• Each node is associated with an embedding vector, which are parameters

Not inductive

- Cannot handle new nodes
- Cannot handle node attributes

From shallow embedding to Graph Neural Networks

- The embedding function (encoder) is more complicated
 - Shallow embedding
 - $\phi(v) = U^T x_v$, where U is the embedding matrix and x_v is the one-hot encoding vector
 - Graph neural networks
 - $\phi(v)$ is a neural network depending on the graph structure

Outline

Introduction

Graph Neural Networks

Graph Neural Networks for Heterogeneous Graphs

Discussions

Notations

- •An attributed graph G = (V, E)
 - *V*: vertex set
 - E: edge set
 - A: adjacency matrix
 - $X \in \mathbb{R}^{d_0 \times |V|}$: feature matrix for all the nodes
 - N(v): neighbors of node v
 - h_{v}^{l} : Representation vector of node v at Layer l
 - Note $h_v^0 = x_v$
 - $H^{l} \in \mathbb{R}^{d_{l} \times |V|}$: representation matrix

The General Architecture of GNNs

For a node v at layer t

$$h_v^{(t)} = f\left(\underline{h_v^{(t-1)}}, \left\{\underline{h_u^{(t-1)}}|u \in \mathcal{N}(v)\right\}\right)$$

representation vector from previous layer for node v representation vectors from previous layer for node v's neighbors

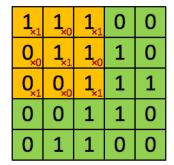
- A function of representations of neighbors and itself from previous layers
 - Aggregation of neighbors
 - Transformation to a different space
 - **Combination** of neighbors and the node itself

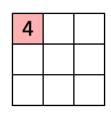
Compare with CNN

Recall CNN

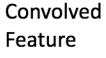
GNN

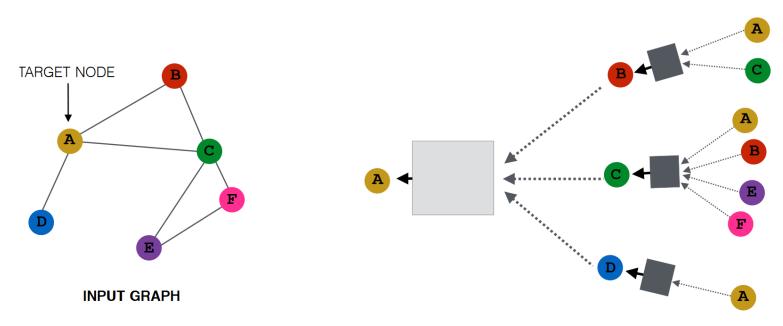
• Regular graph





• Extend to irregular graph structure





Graph Convolutional Network (GCN)

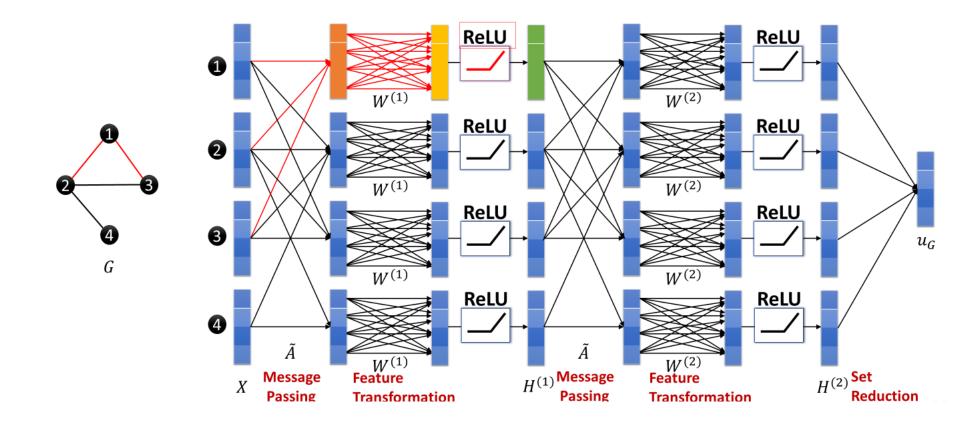
- Kipf and Welling, ICLR'17
 - $f(H^{(l)}, A) = \sigma\left(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}\right), \hat{A} = A + I$
 - f: graph filter
- From a node v's perspective

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v) \cup v} \frac{\mathbf{h}_{u}^{k-1}}{\sqrt{|N(u)||N(v)|}} \right)$$

W_k: weight matrix at Layer k, shared across different nodes

A toy example of 2-layer GCN on a 4-node graph

Computation graph



GraphSAGE

 Inductive Representation Learning on Large Graphs William L. Hamilton*, Rex Ying*, Jure Leskovec, NeurIPS'17

$$\mathbf{h}_{\mathcal{N}(v)}^{k} \leftarrow \operatorname{AGGREGATE}_{k}(\{\mathbf{h}_{u}^{k-1}, \forall u \in \mathcal{N}(v)\})$$
$$\mathbf{h}_{v}^{k} \leftarrow \sigma\left(\mathbf{W}^{k} \cdot \operatorname{CONCAT}(\mathbf{h}_{v}^{k-1}, \mathbf{h}_{\mathcal{N}(v)}^{k})\right)$$

A more general form

$$\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{W}_{k} \cdot \overline{\operatorname{AGG}\left(\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\}\right)}, \mathbf{B}_{k}^{*} \mathbf{h}_{v}^{k-1}\right]\right)$$

More about AGG

• Mean
$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

• LSTM AGG = LSTM $([\mathbf{h}_u^{k-1}, \forall u \in \pi(N(v))])$ • $\pi(\cdot)$: a random permutation

Pool AGG = γ {Qh^{k-1}_u, ∀u ∈ N(v)} γ(·): Element-wise mean/max pooling of neighbor set

Message-Passing Neural Network

- Gilmer et al., 2017. Neural Message Passing for Quantum Chemistry. ICML.
- A general framework that subsumes most GNNs
 - Can also include edge information
- Two steps
 - Get messages from neighbors at step k

$$\mathbf{m}_v^k = \sum_{u \in N(v)} M(\mathbf{h}_u^{k-1}, \mathbf{h}_v^{k-1}, \mathbf{e}_{u,v}) \qquad \text{e.g., Sum or MLP}$$

• Update the node latent represent based on the msg

 $\mathbf{h}_v^k = U(\mathbf{h}_v^{k-1}, \mathbf{m}_v^k)$ e.g., LSTM, GRU

A special case: GGNN, Li et al., Gated graph sequence neural networks, ICLR 2015

Graph Attention Network (GAN)

- How to decide the importance of neighbors?
 - GCN: a predefined weight
 - Others: no differentiation
- GAN: decide the weights using learnable attention
 - Velickovic et al., 2018. Graph Attention Networks. *ICLR*.

$$\vec{h}_i' = \sigma \left(\sum_{j \in \mathcal{N}_i} \alpha_{ij} \mathbf{W} \vec{h}_j \right)$$

The attention mechanism

Potentially many possible designs

$$\alpha_{ij} = \frac{\exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}\vec{h}_{i}\|\mathbf{W}\vec{h}_{j}]\right)\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(\operatorname{LeakyReLU}\left(\vec{\mathbf{a}}^{T}[\mathbf{W}\vec{h}_{i}\|\mathbf{W}\vec{h}_{k}]\right)\right)}$$

Outline

Introduction

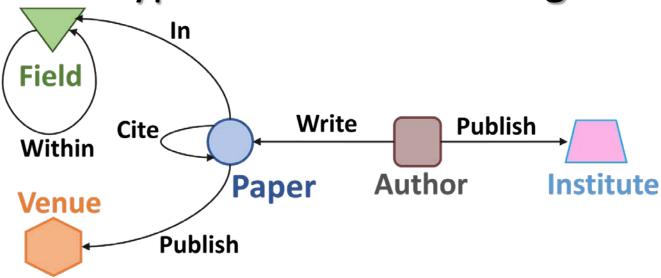
Graph Neural Networks

Graph Neural Networks for Heterogeneous Graphs

Discussions

What are Heterogeneous Networks?

Different types of nodes and edges



Example: Network Schema of Academic Networks

- Other examples:
 - E-Commerce
 - Knowledge graphs

Recap: GNNs

Message passing framework

 $H^{l}[t] \leftarrow \underset{\forall s \in N(t), \forall e \in E(s, t)}{\mathsf{Aggregate}} \left(\mathsf{Extract} \left(H^{l-1}[s]; H^{l-1}[t], e \right) \right)$

 $Aggregate(\cdot)$: aggregate messages from different neighbors and edges

 $Extract(\cdot)$: extract a message from < t, e, s >

Attention scheme

$$H^{l}[t] \leftarrow \underset{\forall s \in N(t), \forall e \in E(s, t)}{\mathsf{Aggregate}} \left(\mathsf{Attention}(s, t) \cdot \mathsf{Message}(s) \right)$$

Attention(s,t): attention Message(s): score on the edge $\langle s, t \rangle$ information from s

Challenges Raised by HIN

Message passing framework

 $H^{l}[t] \leftarrow \underset{\forall s \in N(t), \forall e \in E(s, t)}{\mathsf{Aggregate}} \left(\mathsf{Extract} \left(H^{l-1}[s]; H^{l-1}[t], e \right) \right)$

- RGCN [ESWC'2018]: Parameterized by edge types
- HetGNN [WWW'19]: Parameterized by node types
- HAN [KDD'19]: Parameterized by meta-paths

Attention scheme

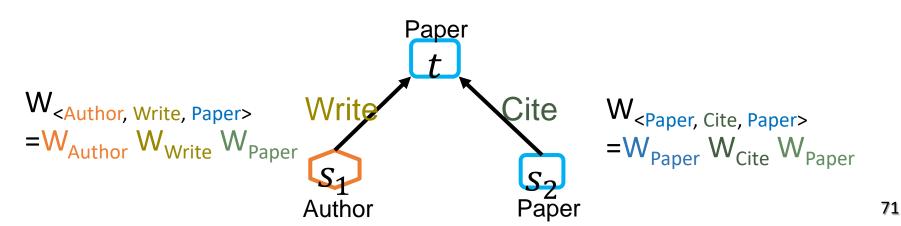
 $H^{l}[t] \leftarrow \underset{\forall s \in N(t), \forall e \in E(s, t)}{\mathsf{Aggregate}} \left(\mathsf{Attention}(s, t) \cdot \underset{\mathsf{Message}(s)}{\mathsf{Message}(s)} \right)$

Messages are of different types!

• HAN [KDD'19]: Attention weights parameterized by meta-paths

Our Solution: Heterogeneous Graph Transformer (HGT), Hu et al., WWW'20

- Parameterization by Meta-Relation
 - Meta-Relation: <source_type, edge_type, targe_type>
 - E.g., <author, first_author_of, paper>, <author, second_author_of, paper>
 - Parameter Sharing
 - Capture the correlation between different meta-relations
 - More efficient in terms of parameter space



Message, Attention, and Aggregation of HGT

Heterogeneous message for an edge <s, e, t>

$$Message_{HGT}(s, e, t) = \left\| MSG\text{-}head^{i}(s, e, t) \right\|_{i \in [1, h]} MSG\text{-}head^{i}(s, e, t) = M\text{-}Linear_{\tau(s)}^{i} \left(H^{(l-1)}[s]\right) W_{\phi(e)}^{MSG}$$

Heterogeneous mutual attention on edge <s, e, t>

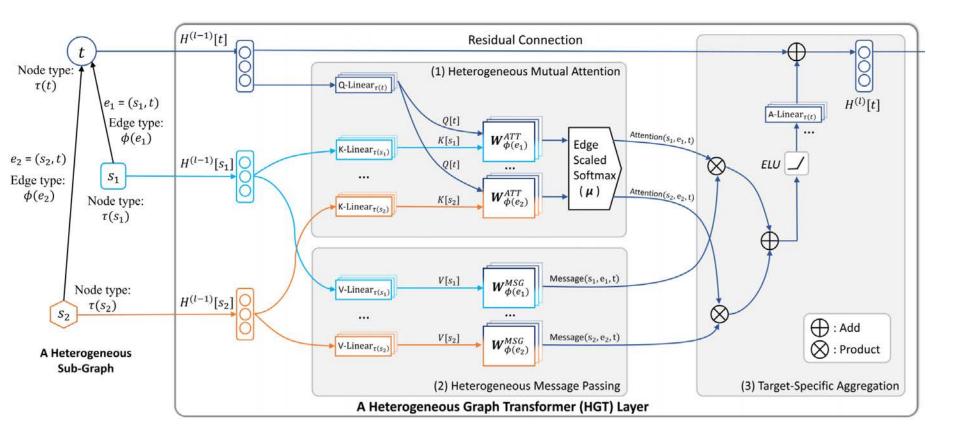
$$\begin{aligned} \text{Attention}_{HGT}(s, e, t) &= \operatorname{Softmax} \left(\begin{array}{c} || & ATT-head^{i}(s, e, t) \right) \quad (3) \\ &i \in [1, h] \end{aligned} \right. \\ ATT-head^{i}(s, e, t) &= \left(K^{i}(s) \ W_{\phi(e)}^{ATT} \ Q^{i}(t)^{T} \right) \cdot \underbrace{ \begin{array}{c} \mu_{\langle \tau(s), \phi(e), \tau(t) \rangle} \\ &\sqrt{d} \end{array} \right. \\ &K^{i}(s) &= \operatorname{K-Linear}_{\tau(s)}^{i} \left(H^{(l-1)}[s] \right) \end{aligned} \\ Significant score for each \\ &\operatorname{meta-relation} \\ Q^{i}(t) &= \operatorname{Q-Linear}_{\tau(t)}^{i} \left(H^{(l-1)}[t] \right) \end{aligned}$$

Task-specific aggregation

$$\widetilde{H}^{(l)}[t] = \bigoplus_{\forall s \in N(t)} \left(\text{Attention}_{HGT}(s, e, t) \cdot \text{Message}_{HGT}(s, e, t) \right)$$
$$H^{(l)}[t] = \text{A-Linear}_{\tau(t)} \left(\sigma \left(\widetilde{H}^{(l)}[t] \right) \right) + H^{(l-1)}[t].$$

Architecture of HGT

Putting together



Leaderboard #1 on Open Graph Benchmark

Leaderboard for ogbn-mag

The classification accuracy on the test set. The higher, the better.

Package: >=1.2.1

Method	Accuracy	Contact	References #Params		Hardware	Date
HGT (LADIES Sample)	0.5007 ± 0.0043	Ziniu Hu	Paper, Code	21,173,389	Tesla K80 (12GB GPU)	Jul 7, 2020
GraphSAINT (R-GCN aggr)	0.4751 ± 0.0022	Matthias Fey – OGB team	Paper, Code	154,366,772	GeForce RTX 2080 (11GB GPU)	Jun 26, 2020
NeighborSampling (R-GCN aggr)	0.4678 ± 0.0067	Matthias Fey – OGB team	Paper, Code	154,366,772	GeForce RTX 2080 (11GB GPU)	Jun 26, 2020
Full-batch R-GCN	0.3977 ± 0.0046	Matthias Fey – OGB team	Paper, Code	154,366,772	Quadro RTX 8000 (48GB GPU)	Jun 26, 2020
ClusterGCN (R-GCN aggr)	0.3732 ± 0.0037	Matthias Fey – OGB team	Paper, Code	154,366,772	GeForce RTX 2080 (11GB GPU)	Jun 26, 2020
	HGT (LADIES Sample) GraphSAINT (R-GCN aggr) NeighborSampling (R-GCN aggr) Full-batch R-GCN	HGT (LADIES Sample) 0.5007 ± 0.0043 GraphSAINT (R-GCN aggr) 0.4751 ± 0.0022 NeighborSampling (R-GCN aggr) 0.4678 ± 0.0067 Full-batch R-GCN 0.3977 ± 0.0046	HGT (LADIES Sample)0.5007 ± 0.0043Ziniu HuGraphSAINT (R-GCN aggr)0.4751 ± 0.0022Matthias Fey - OGB teamNeighborSampling (R-GCN aggr)0.4678 ± 0.0067Matthias Fey - OGB teamFull-batch R-GCN0.3977 ± 0.0046Matthias Fey - OGB team	HGT (LADIES Sample)0.5007 ± 0.0043Ziniu HuPaper, CodeGraphSAINT (R-GCN aggr)0.4751 ± 0.0022Matthias Fey - OGB teamPaper, CodeNeighborSampling (R-GCN aggr)0.4678 ± 0.0067Matthias Fey - OGB teamPaper, CodeFull-batch R-GCN0.3977 ± 0.0046Matthias Fey - OGB teamPaper, Code	HGT (LADIES Sample) 0.5007 ± 0.0043 Ziniu Hu Paper, Code 21,173,389 GraphSAINT (R-GCN aggr) 0.4751 ± 0.0022 Matthias Fey – OGB team Paper, Code 154,366,772 NeighborSampling (R-GCN aggr) 0.4678 ± 0.0067 Matthias Fey – OGB team Paper, Code 154,366,772 Full-batch R-GCN 0.3977 ± 0.0046 Matthias Fey – OGB team Paper, Code 154,366,772	HGT (LADIES Sample) 0.5007 ± 0.0043 Ziniu Hu Paper, Code 21,173,389 Tesla K80 (12GB GPU) GraphSAINT (R-GCN aggr) 0.4751 ± 0.0022 Matthias Fey - OGB team Paper, Code 154,366,772 GeForce RTX 2080 (11GB GPU) NeighborSampling (R-GCN aggr) 0.4678 ± 0.0067 Matthias Fey - OGB team Paper, Code 154,366,772 GeForce RTX 2080 (11GB GPU) Full-batch R-GCN 0.3977 ± 0.0046 Matthias Fey - OGB team Paper, Code 154,366,772 Quadro RTX 8000 (48GB GPU)

Leaderboard for ogbn-products

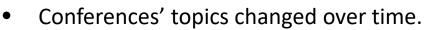
The classification accuracy on the test set. The higher, the better.

Package: >=1.1.1

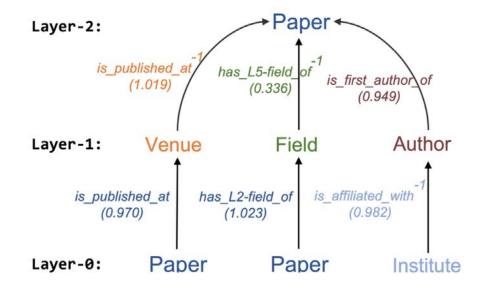
Rank	Method	Accuracy	Contact	References	#Params	Hardware	Date
1	HGT (LADIES Sample)	0.8560 ± 0.0040	Ziniu Hu	Paper, Code	2,025,573	Tesla K80 (12GB GPU)	Jul 8, 2020
2	DeeperGCN	0.8098 ± 0.0020	Guohao Li - DeepGCNs.org	Paper, Code	253,743	NVIDIA Tesla V100 (32GB GPU)	Jun 28, 2020
3	GAT with NeighborSampling	0.7945 ± 0.0059	Matthias Fey	Paper, Code	1,751,574	GeForce RTX 2080 (11GB GPU)	May 24, 2020
4	GraphSAINT (SAGE aggr)	0.7908 ± 0.0024	Matthias Fey – OGB team	Paper, Code	206,895	GeForce RTX 2080 (11GB GPU)	Jun 10, 2020
5	ClusterGCN (SAGE aggr)	0.7897 ± 0.0033	Matthias Fey – OGB team	Paper, Code	206,895	GeForce RTX 2080 (11GB GPU)	Jun 10, 2020
б	NeighborSampling (SAGE aggr)	0.7870 ± 0.0036	Matthias Fey – OGB team	Paper, Code	206,895	GeForce RTX 2080 (11GB GPU)	Jun 10, 2020
7	Full-batch GraphSAGE	0.7850 ± 0.0014	Matthias Fey – OGB team	Paper, Code	206,895	Quadro RTX 8000 (48GB GPU)	Jun 20, 2020
8	GraphSAGE	0.7829 ± 0.0016	Quan Gan (DGL Team)	Paper, Code	Please tell us	Please tell us	May 12, 2020

Case Studies

Venue	Time	Top–5 Most Similar Venues			
	2000	SIGMOD, VLDB, NSDI, GLOBECOM, SIGIR			
WWW	2010	GLOBECOM, KDD, CIKM, SIGIR, SIGMOD			
	2020	KDD, GLOBECOM, SIGIR, WSDM, SIGMOD			
KDD	2000	SIGMOD, ICDE, ICDM, CIKM, VLDB			
	2010	ICDE, WWW, NeurIPS, SIGMOD, ICML			
	2020	NeurIPS, SIGMOD, WWW, AAAI, EMNLP			
NeurIPS	2000	ICCV, ICML, ECCV, AAAI, CVPR			
	2010	ICML, CVPR, ACL, KDD, AAAI			
	2020	ICML, CVPR, ICLR, ICCV, ACL			



• The relative temporal encoding can help capture this temporal evolution.



- HGT can implicitly extract meta paths for specific downstream tasks, without manual customization.
 - Read from $\mu_{\langle \tau(s), \phi(e), \tau(t) \rangle}$

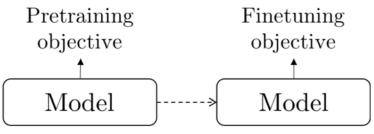
Pre-Training of Graph Neural Networks

Challenges on training GNNs

• Requires abundant task-specific labeled data

•What is pre-training?

- Train GNNs with self-supervision and then transfer learned model to downstream tasks with only a few labels
- Popular in NLP: e.g., BERT



Key to the Success of Pre-Training

Self-supervised Tasks

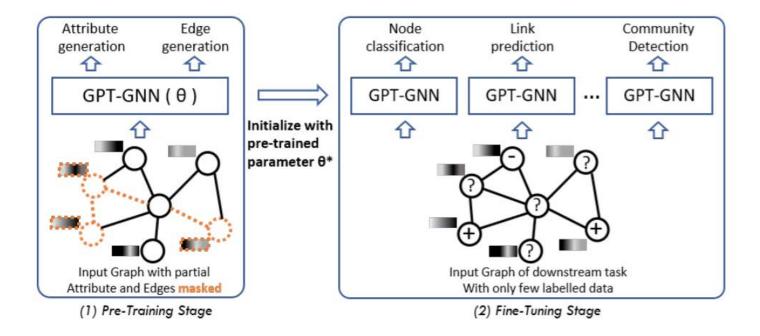
- No additional labels are needed
- General enough to different downstream tasks

Existing self-supervised tasks for graphs

- Link prediction [GAE, GraphSAGE (NIPS'17)]
- Maximize mutual information between a patch and its super graph [DGI (ICLR'19)]

Our Solution: GPT-GNN (Hu et al., KDD'20)

- Pre-train GNNs via the generative task to generate both node attributes and edges
 - Goal: find GNN parameters $\theta^* = \max_{\theta} p(G; \theta)$



Model $p(G; \theta)$

Average over different node order permutation π

 $p(G; \theta) = \mathbb{E}_{\pi} \left[p_{\theta}(X^{\pi}, E^{\pi}) \right]$ X: node attributes; E: edge list for all nodes

Factorize the joint probability autoregressively given π

 $\log p_{\theta}(X^{\pi}, E^{\pi}) = \sum_{i=1}^{n} \log p_{\theta}(X_i^{\pi}, E_i^{\pi} \mid X_{<i}^{\pi}, E_{<i}^{\pi}). X_i: \text{ attribute for node } i; E_i: \text{ edge list for node } i$

Factorize the conditional probability p(current|past)

$$p_{\theta}(X_{i}^{\pi}, E_{i}^{\pi} \mid X_{

$$= \mathbb{E}_{o} \left[p_{\theta}(X_{i}^{\pi}, E_{i,\neg o}^{\pi} \mid E_{i,o}^{\pi}, X_{

$$= \mathbb{E}_{o} \left[\underbrace{p_{\theta}(X_{i}^{\pi} \mid E_{i,o}^{\pi}, X_{$$$$$$

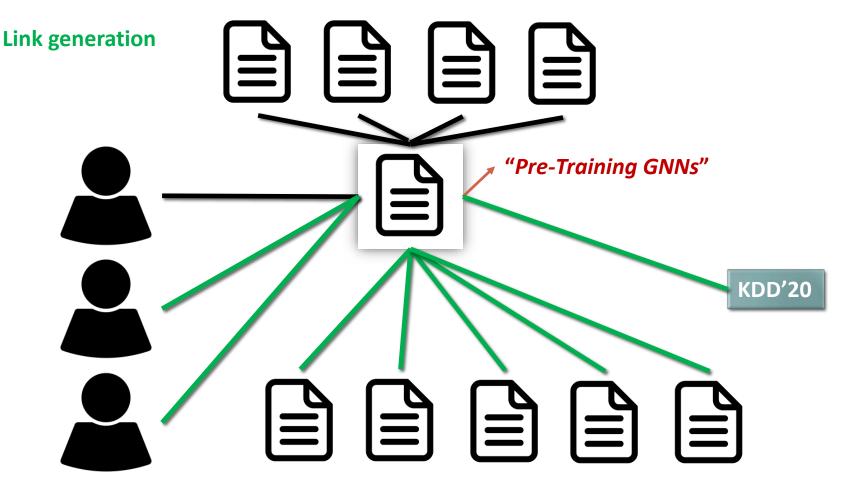
1) generate attributes

2) generate edges

Illustration of the Factorization

Observed links

Attribute generation



Results

Data 1: Open Academic Graph

Pre-Train	Fine-Tune		Downstream Dataset	OAG			
No Transfer: CS Academic Gra	aph CS Academic Graph		Evaluation Task	Paper-Field	Paper-Venue	Author ND	
Field Transfer: Med, Bio, Physic	cS Academic Graph		No Pre-train	.336±.149	$.365 \pm .122$.794±.105	
Time Transfer: CS before 2014		Field Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.403±.114 .368±.125 .387±.112	.418±.093 .401±.096 .404±.097	.816±.084 .803±.092 .810±.084	
Time + Field Transfer: Med, Bio, Physic before 2014	Med, Bio, Physics before 2014 CS after 2014		GPT-GNN (Attr) GPT-GNN (Edge) GPT-GNN	.396±.118 .401±.109 .407±.107	.423±.105 .428±.096 .432±.098	.818±.086 .826±.093 .831±.102	
 All pre-training frameworks help the performance of GNNs GAE, GraphSage, Graph Infomax GPT-GNN GPT-GNN helps the most by achieving a relative performance gain of 9.1% over the base model without pre-training 		Transfer Time Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.384±.117 .352±.121 .369±.116	.412±.101 .394±.105 .398±.102	.812±.095 .799±.093 .805±.089	
			GPT-GNN (Attr) GPT-GNN (Edge) GPT-GNN	.382±.114 .392±.105 .400±.108	.414±.098 .421±.102 .429±.101	.811±.089 .821±.088 .825±.093	
			GAE GraphSAGE (unsp.) Graph Infomax	.371±.124 .349±.130 .360±.121	.403±.108 .393±.118 .391±.102	.806±.102 .797±.097 .800±.093	
 Both self-supervise help the pre-training Attribute generation Edge generation 	framework ation	Time + Field	GPT-GNN (Attr) — (w/o node separation) GPT-GNN (Edge) — (w/o adaptive queue) GPT-GNN	$.364 \pm .115$ $.347 \pm .128$ $.386 \pm .116$ $.376 \pm .121$ $.393 \pm .112$.409±.103 .391±.102 .414±.104 .410±.115 .420±.108	.809±.094 .791±.108 .815±.105 .808±.104 .818±.102	

Introduction

Graph Neural Networks

Graph Neural Networks for Heterogeneous Graphs

Open Questions

•Why GNNs work?

- Is the nonlinear transformation necessary?
- Chen et al., Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification, arXiv:1905.04579
- A concatenate feature vector from graph propagation, followed by a MLP works equally well, and much faster!

$$X^{G} = \gamma(G, X) = \left[\boldsymbol{d}, X, \tilde{A}^{1}X, \tilde{A}^{2}X, \cdots, \tilde{A}^{K}X \right],$$

Q & A

Thanks to my collaborators:

 Junheng Hao, Xuelu (Shirley) Chen, Ziniu Hu, Kewei (Vivian) Cheng, Wei Wang, Kai-Wei Chang, Carlo Zanialo, Muhao Chen, Yuxiao Dong, Kuansan Wang, etc...

- Thanks to my funding agencies and industry support:
 - NSF, DARPA, PPDAI, Yahoo!, Nvidia, Snapchat, Amazon, Okawa Foundation