Academic Field and Future Influence
Prediction for Scholar Profile Construction

Jiaying Tang, Hongying Jin, Daling Wang( Shi Feng, and Yifei Zhang
School of Computer Science and Engineering, Northeastern University, Shenyang, China
ingl1996(@foxmail.com, 757232699(@qq.com, {wangdaling, fengshi,
zhangyifeig} (@cse.neu.edu.cn

1 Introduction 2.2 Future academic influence prediction

Collecting scholar information from massive academic
resources to construct scholar profiles can provide a
reference for various academic activities. For a scholar
profile, except basic attributes such as age, gender, job
title, some potential attributes such as academic field
and future influence need to be predicted (Fig.l).
Towards that, we propose two models to predict them.

We use the PageRank algorithm with time perception to
calculate the impact of the paper or the journal, and newly
published papers will be given a higher score.
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Fig. 3. The framework of CSCF model
Two-level catboost fusion regression model . The first

level takes different combinations of three features as
input (paper timing features s, journal timing features j,

Fig. 1. Basic structure of scholar profile and scholar feature space a) (Fig. 3).
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2 Methods 3 Experiment
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Fig. 2. The model of academic field prediction . ) ) o
Fig. 4. The effect of age interval or title on the future academic influence
We propose a model framework shown in Fig. 2, which = e = owEr = oty
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input, and obtains the high-level feature representation Rl et AR 2
through the sub-model (MDAG) Fig. 5. Evaluation index results of ablation experiments

We propose a double-layer attention model of paper information and journal information representation
model for predicting scholars academic field based on multiple data sources. We also propose a two-level
fusion model based on feature combination for predicting scholars' future academic influence. The
experimental results prove that our models are superior to the state-of-the-art methods.




