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Modern recommender systems usually suffer from long tail effect, we preferencaprojecin SR
argue that this can be solved by T

* Knowledge-enhanced decomposing and reassembling from KG

* User prototype learning for user group
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Experiment result on MovieLens-1M dataset
MF 1.731 2345
NFM 1.712 2,324
s Embadding Protype Hitting Time 1.753 2315
Transiion Learning MELU 1.685 2,297
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A bating Experiment result on Recsys2020 Twitter dataset
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We use TransE method to learn item representation in linked knowledge MF -940.354 -43.285 -2950.675 -34.538
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