### Recent Advances in Inaudible Adversarial Attack in Speaker Recognition and Multi-channel Speech Separation in Complicated Environments



Lei Xie

Audio, Speech & Language Processing Group (ASLP@NPU), Northwestern Polytechnical University, Xi'an, China



# ASLP@NPU



Lei Xie ASLP@NPU





Audio, Speech and Language Processing Group NPU





- Inaudible Adversarial Attack in Speaker Recognition
- Multi-channel Speech Separation in Complicated Environments

# ecognitior plicated





- Inaudible Adversarial Attack in Speaker Recognition
- Multi-channel Speech Separation in Complicated Environments

Lei Xie ASLP@NPU

# Recognition plicated



## **Adversarial Attacks in Speaker Recognition**

- Spoofing attacks: reply, TTS, VC, etc \*
- DNNs are also vulnerable to adversarial examples (e.g. image or speech related tasks) \*
- **Adversarial examples**: \*
  - Examples with small, intentional perturbations that cause a well-trained model make a false prediction \*



Figures and samples are from Goodfellow 2014 [1] and Carlini 2018 [2].

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," arXiv preprint arXiv:1412.6572, 2014. [2] N. Carlini and D. Wagner, "Audio adversarial examples: targeted attacks on speech-to-text," in Security and Privacy Workshops (SPW). IEEE, 2018, pp. 1–7.

### Lei Xie ASLP@NPU

Northwestern アルフェナタ **Polytechnical University** 

## **Adversarial Attacks in Speaker Recognition**

- **Performing Adversarial Attacks** 
  - Goal of the attacker
    - Adversarial impersonation  $\rightarrow$  targeted attack (user authentication application)
      - Attack transforms a non-target trail (random spkr) into a target trail (target spkr) \*
      - Attacker wants to usurp the identity of another person \*
    - Adversarial evasion  $\rightarrow$  non-targeted attack (forensics, criminal investigation)
      - Attacks transform a target-trail (target spkr) into non-target (different spkr)
      - Attacker wants to avoid detection by ASV system \*
  - **Knowledge of the attacker** •
    - White-box: has full knowledge of the system under attack \*
    - Black-box: has no access to the victim model, generates adv. speech using another white-box system
    - Grey-box: has some information, but not statistical models
  - Methods of the generation of adversarial examples: FGSM, iterative FGSM, Carlini-Wagner... \*

[3] F. Kreuk, Y. Adi, M. Cisse, and J. Keshet, "Fooling end-to-end speaker verification with adversarial examples," in IEEE ICASSP 2018, 2018, pp. 1962–1966. [4] G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu, "Who is real Bob? adversarial attacks on speaker recognition systems," ArXiv, vol. abs/1911.01840, 2019. [5] Z. Li, C. Shi, Y. Xie, J. Liu, B. Yuan, and Y. Chen, "Practical adversarial attacks against speaker recognition systems," in ACM HotMobile 2020, 2020, pp. 9–14. [6] Das, R.K., Tian, X., Kinnunen, T. and Li, H., 2020. The Attacker's Perspective on Automatic Speaker Verification: An Overview. in Interspeech 2020, pp.4213-4217. [7] Villalba, J., Zhang, Y. and Dehak, N., 2020. x-Vectors Meet Adversarial Attacks: Benchmarking Adversarial Robustness in Speaker Verification. in Interspeech 2020, pp.4233-4237. [8] Zhang, Y., Jiang, Z., Villalba, J. and Dehak, N., 2020. Black-box Attacks on Spoofing Countermeasures Using Transferability of Adversarial Examples. Proc. Interspeech 2020, pp.4238-4242. Northwestern *あままもも* 

### Lei Xie ASLP@NPU

olutechnical University

## **Adversarial Attacks in Speaker Recognition**

#### **Defenses of adversarial attacks** \*

#### Improve the robustness of SV model against adversarial attacks

Adversarial regularization is proposed to protect end-to-end speaker verification system [9]. This mechanism aims at finding a worst spot around the current data point, and then optimize using this worst data point to derive a robust model.

#### **Defense against adversarial attacks** •

A passive defense method--spatial smoothing and another proactive method--adversarial training are studied to defend adversarial attacks for spoofing countermeasures [10].

#### **Detection of adversarial examples** \*

Defend ASV systems against adversarial attacks with a separate detection network [11]. A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples.

[9] Q. Wang, P. Guo, S. Sun, L. Xie, and J. H. Hansen, "Adversarial regularization for end-to-end robust speaker verification," in Interspeech 2019, 2019, pp. 4010–4014. [10] H. Wu, S. Liu, H. Meng, and H. yi Lee, "Defense against adversarial attacks on spoofing countermeasures of ASV," in IEEE ICASSP 2020, 2020, pp. 6564–6568. [11] Li, X., Li, N., Zhong, J., Wu, X., Liu, X., Su, D., Yu, D. and Meng, H., 2020. Investigating Robustness of Adversarial Samples Detection for Automatic Speaker Verification. in Interspeech 2020, pp.4233-4237.



- In our study, we aim to exploit this weakness to  $\mathbf{\mathbf{x}}$ perform targeted adversarial attacks against speaker recognition system
- The aforementioned adversarial examples are  $\mathbf{\mathbf{x}}$ mostly restricted to make a slight change of original signal in form of audio sampling points, without considering the human sound perceptibility
- Our aim: Generate inaudible adversarial  $\mathbf{x}$ perturbations for targeted attacking speaker recognition system on wave-level.
- Our approach: Leverage frequency masking [12]
  - Audible sound (random speaker) + another \* louder audible sound (perturbation)  $\rightarrow$ inaudible sound (inaudible adv. example)
- Explore the targeted attacks on non-speech



An overview of the generation of adversarial examples based on frequency masking.

- - \*
  - \*

[12] Qing Wang, Pengcheng Guo, Lei Xie, Inaudible Adversarial Perturbations for Targeted Attack in Speaker Recognition, Interspeech2020 https://arxiv.org/abs/2005.10637

### Lei Xie ASLP@NPU



### **Cons of previous adversarial perturbations:**

Perturbations are small  $\rightarrow$  lower attack success rate Constrict noise by  $l_p$  norm  $\rightarrow$  easily detectable



#### **Estimation of frequency masking threshold** \*

**Step1**: Identifications of maskers \*

$$T[b(j), b(i)]/dB = \overline{P}_{x}[b(j)] + \Delta [b(j)] + SF[b(j), b(i)]$$

 $\mathbf{\mathbf{x}}$ 

 $T_G(i)/dB =$ 

 $P_{x}(k)/dB = 10 \log_{10} \left| \frac{1}{N} s_{x}(k) \right|^{2}$ 

b) Larger than absolute threshold

$$\bar{P}_{\chi}(\bar{k}) = 10\log_{10}\left[10^{\frac{\bar{P}_{\chi}(k-1)}{10}} + 10^{\frac{\bar{P}_{\chi}(k)}{10}} + 10^{\frac{\bar{P}_{\chi}(k+1)}{10}}\right]$$

a) Local maxima;

Lei Xie ASLP@NPU

STFT

PSD

**3** Constraints

Smoothing

**Step2**: Calculation of individual masking thresholds

T[b(j), b(i)]: masker at *j*-th freq. contributes to the masking threshold on maskee at *i*-th freq.

Step3: Calculation of global masking threshold

$$10\log_{10}\left[10^{\frac{ATH(i)}{10}} + \sum_{j=1}^{N_{M}} 10^{\frac{[b(j),b(i)]}{10}}\right]$$

W. H. Abdulla, "Principles of psychoacoustics," mark. Springer, 2015, pp. 15-49.



### **Objective functions** $L_{TH}(x,\delta) = \mathbb{E}_k \max\{\overline{P}_{\delta}(k) - T_{C}(k), 0\}$ $\min L(x, \delta, y') = L_{CE}(f(x + \delta), y') + \alpha \cdot L_{TH}(x, \delta)$ \* detectable **Optimization procedure** $\mathbf{x}$ Attack Stage 1: \* $\delta \leftarrow clip_{\epsilon} \left( \delta - lr_1 \cdot sign(\nabla_{\delta} L_{CE}(f(x + \delta), y')) \right)$ Attack Stage 2: $\delta \leftarrow \delta - lr_2 \cdot \nabla_{\delta} L(x, \delta, y')$

- Cons of previous adversarial perturbations:
  - Perturbations are small  $\rightarrow$  lower attack success rate
  - Constrict noise by  $l_p \text{ norm} \rightarrow \text{easily}$  detectable
- Pros of inaudible adversarial perturbations:
   Perturbations can be larger and inaudible
   Constrict function is consistent with psychoacoustic principle



### Dataset

Aichall 1.

| ** | AISN | en-1:                                                                                        | *  | R        |
|----|------|----------------------------------------------------------------------------------------------|----|----------|
|    | *    | Original set: 10 female (F) and 10 male speakers (M), each with 100 utterances               | ** | *        |
|    | *    | Attack target set: another 10 female (F') and 10 male speaker (M'), each with 100 utterances | *  | ÷        |
|    | *    | Four test modes: M2M', M2F', F2M' and F2F'                                                   | ** | ۲ \<br>۲ |
| *  | MUS  | SAN (Music portion from MUSAN as the non-speech dataset):                                    |    |          |
|    | *    | 200 pieces of western art music are cut into 1000 pieces of 6 seconds short segments         |    | *        |
| *  | Roo  | m Impulse Response and Noise Database                                                        |    | *        |
|    | *    | Used for on-the-air attack                                                                   |    | **       |
|    |      |                                                                                              |    |          |

[14] Snyder, D., Garcia-Romero, D., Sell, G., Povey, D. and Khudanpur, S., 2018, April. X-vectors: Robust dnn embeddings for speaker recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5329-5333). IEEE.
[15] Ravanelli, M. and Bengio, Y., 2018, December. Speaker recognition from raw waveform with sincnet. In 2018 IEEE Spoken Language Technology Workshop (SLT) (pp. 1021-1028). IEEE.

### Lei Xie ASLP@NPU

aseline

White-box attack: x-vector system [13] On-the-air attack: SincNet system [14]

valuation metric

Attack success rate

 $Acc = N_s / N$ 

Perceptual evaluation of speech quality (PESQ)

Signal-to-noise ratio (SNR)

Subjective listening



Northwestern *ぁµ*ょまえき Polytechnical University

- Experimental results and analysis
  - White-box attack (x-vector system)  $\mathbf{x}$





White-box attack yields up to 98.5% attack success rate to arbitrary gender speaker targets with inaudible \* adversarial perturbations

We can achieve up to 47.1% attack success rate in on-the-air attack \* Lei Xie ASLP@NPU More demos: https://pengchengguo.github.io/inaudible-advex-for-sv/

### **On-the-air attack (SincNet system)**

|   | M2M' | M2F'         | F2M'        | F2F' |
|---|------|--------------|-------------|------|
| 1 | 4.8  | 3.9          | 4.5         | 3.7  |
| 2 | 47.1 | 45.2         | 42.1        | 41.6 |
| ζ |      | <b>(</b> ,)) |             |      |
| 1 |      |              |             |      |
| 2 | (((  |              | <b>(</b> )) |      |





Larger perturbation by the proposed approach  $\mathbf{x}$ 



M2M' -- Stage 1

Lei Xie ASLP@NPU

More demos: <a href="https://pengchengguo.github.io/inaudible-advex-for-sv/">https://pengchengguo.github.io/inaudible-advex-for-sv/</a>

M2M' -- Stage 2







Northwestern *東北スキナ*ダ olytechnical University



#### Experimental results $\bigstar$

White-box attack  $\bigstar$ 



PESQ and SNR (dB) comparison of Attack Stage1 and Attack Stage2.

#### **Subjective listener evaluation**

|               | Preference (%) |               |                 |  |  |
|---------------|----------------|---------------|-----------------|--|--|
| Attack Stage1 | Neural         | Attack Stage2 | <i>p</i> -value |  |  |
| 11.33         | 20.00          | 68.67         | 0.0379          |  |  |

Preference scores (%) of Attack Stage1 and Attack Stage2.

#### Non-speech targeted attack \*

|         | Before Attack | Attack Stage1 | Attack Stage2 |
|---------|---------------|---------------|---------------|
| Acc     | 0.00%         | 77.0%         | 91.5%         |
| Sample1 |               |               |               |
| Sample2 |               | (( ا          | (د            |

- **Conclusions** \*
  - \*\*

Lei Xie ASLP@NPU

[12] Qing Wang, Pengcheng Guo, Lei Xie, Inaudible Adversarial Perturbations for Targeted Attack in Speaker Recognition, Interspeech2020 https://arxiv.org/abs/2005.10637

Objective and subjective evaluations indicate that frequency masking based adversarial perturbations are more inaudible, even with larger absolute energies

Experiments on MUSAN corpus show that even non-speech can achieve a high targeted speaker attack success rate.



Northwestern *ぁぉょぇ*ぇぇ Polytechnical University

## **Future Directions and Challenges**

- More realistic scenarios:  $\checkmark$ 
  - On-the-air attack
  - Black-box attack
- Defense/detection of adversarial attacks
- Also some other challenges: \*
  - **Evaluation metrics?**
  - Standard dataset?
  - Any other attack scenario? \*







- Inaudible Adversarial Attack in Speaker Recognition
- Multi-channel Speech Separation in Complicated Environments





# Move to the Cocktail Party Problem



"One of our most important faculties is our ability to listen to, and follow, one speaker in the presence of others. This is such a common experience that we may take it for granted; we may call it 'the cocktail party problem'..." (Cherry' 57)



# **Towards Multi-Talker Speech Recognition**

- Speech separation is a common practice to handle the speaker overlaps
- Multi-talker aware ASR  $\bigstar$ 
  - MIMO-Speech, SpeakerBeam...  $\bigstar$
- Front-end + Back-end
  - Beamforming, esp. Fixed Beamforming  $\bigstar$
  - Mask-based Adaptive Beamforming \*
  - Ad-hoc Speech Enhancement and Separation
- Speaker-independent Continuous Speech Separation (SI-CSS)  $\bigstar$
- Injecting prior knowledge (bias) into speech separation  $\bigstar$







Northwestern *東北スも大き* Polytechnical University

# **Low-latency Continuous Speech Separation**

#### **Extraction vs. Separation** $\mathbf{x}$

Lei Xie ASLP@NPU

- Speech extraction usually has better performance upper bound \* and is easier to joint train with other module
- But it usually suffers from the efficiency limitation and heavily \*\* depend on the bias signal
- **UFE**: Combining the advantageous from both [1]
  - Speech separation pre-separate the mixed signal \*\*
  - Speech extraction further enhance the result \*\*
  - Acceptable computation cost with low latency online processing \*\*



### Figure Credit: Zhuo Chen



- UFE System (Unmixing, Fixed-beam and Extraction) [1]  $\mathbf{x}$ 
  - *M*-channel STFT of input speech mixture:  $Y_{0,\dots,M-1} = \{Y_0, \dots, Y_{M-1}\}$ \*
  - **Unmixing network (U)**: multi-channel TF mask  $\mathbf{M}_{0,1} \in \mathbb{R}^{T \times F}$  estimation via PIT under Si-SNR loss  $\mathbf{x}$

$$\mathcal{L} = -\max_{\phi \in \mathcal{P}} \sum_{(i,j) \in \phi} \operatorname{Si-SNR}(\mathbf{s}_i, \mathbf{x}_j), \qquad \mathbf{s}_i = \operatorname{iSTFT}(\mathbf{M}_i \odot \mathbf{Y}_0)$$

Sound Source Localization (SSL): estimate the spatial angle for *i<sup>th</sup>* speaker 

$$\mathcal{D}_{\theta,i} = -\sum_{t,f} \mathbf{M}_{i,tf} \log \left( 1 - \frac{|\mathbf{y}_{t,f}^{H} \mathbf{h}_{\theta,f}|^{2}}{1+\epsilon} \right)$$

**Fixed beamformer (F)**  $\mathbf{x}$ 

$$b_{i,t,f} = \mathbf{w}_{i,f}^H \mathbf{y}_{t,f}, \ \mathbf{y}_{t,f} = [\mathbf{Y}_{0,tf}, \cdots, \mathbf{Y}_{M-1}]$$

**Extraction Network (E):** location-based speech extraction on each \* selected beam

$$\mathbf{a}_{ heta,f} = rac{1}{P} \sum_{i,j \in \psi} \cos(\mathbf{o}_{ij,f} - \Delta_{ heta,ij,f}),$$

[1] Takuya Yoshioka, Zhuo Chen, Changliang Liu, Xiong Xiao, Hakan Erdogan, and Dimitrios Dimitriadis, "Low-latency speaker-independent continuous speech separation," ICASSP 2019





**Fig. 1.** Overview of the UFE system.  $\mathcal{F}$ ,  $\mathcal{B}$ ,  $\mathcal{A}$  and SSL denote short-time Fourier transform (STFT), fixed beamforming, angle feature computation and SSL algorithm, respectively.  $\mathbf{M}_{i}^{U}$  and  $\mathbf{M}_{i}^{E}$ represent the TF-masks of the *i*-th speaker generated by *unmixing* (U) and *extraction* (E) network.  $A_i$  and  $B_i^M$  denote the angle feature and the selected beam given the speaker direction  $\theta_i$ . The *unmixing* and extraction model are trained independently.



- Advantages of the UFE system
  - Low latency as fixed beamformer used
  - Overcome the weak spatial cancellation issue for common fixed beamformer applications through additional speech extraction step
- Drawbacks of the UFE system: modularized optimization with sub-optimal performance
  - All components are optimized separately
    - \* Speech unmixing and extraction are optimized with **signal reconstruction metric**
    - Sound localization is optimized with ML
    - \* Beamformer is designed with **hand tuned criteria**



Proposed E2E-UFE: all components are optimized jointly via a unified network [2] 

- The TF-masks generated by unmixing network is converted to **hidden representation**  $\mathbf{x}$
- An attentional module between the mask-embedding and beamforming output, candidate directional \*\* features is applied to pick the corresponding beam and angle feature, which are passed to neural extraction module
  - Allow the gradients to propagate though the beam selection module, which was non-differentiable in \* the original UFE
- Extraction network takes both beams and angle features as input, outputting two beams simultaneously
- All the outputting beams are **optimized jointly with PIT objective**, which avoids the permutation ambiguity  $\mathbf{x}$ when speakers are spatially close.
- With these updates, we ensure that the gradient from the top layer can pass to all sub-modules of the  $\mathbf{\mathbf{x}}$ system, i.e. making the system **optimized in an end-to-end manner**, while keep the advantage of base model with low-latency processing

[2] Jian Wu, Zhuo Chen, Jinyu Li, Takuya Yoshioka, Zhili Tan, Ed Lin, Yi Luo, Lei Xie, AN END-TO-END ARCHITECTURE OF ONLINE MULTI-CHANNEL SPEECH SEPARATION, Interspeech2020 https://arxiv.org/abs/2009.03141



#### **Proposed E2E-UFE** •



Pre-separation (U) \*

 $\mathbf{V}^{P}=\mathbf{E}\mathbf{W}_{p},$ 

 $\mathbf{V}^B = |\mathbf{B}|\mathbf{W}_b,$ 

Attentional beam & angle selection (F)  $\mathbf{\mathbf{x}}$ 



$$\hat{\mathbf{B}}_h = \sum_b w_{h,b} \mathbf{B}_b.$$

Joint Extraction (E): Beam selection & wave reconstruction are optimized with one objective function \*

$$\mathcal{L} = - \max_{\phi \in \mathcal{P}} \sum_{(i,j) \in \phi} \operatorname{Si-SNR}(\mathbf{s}_i, \mathbf{r}_j),$$

Lei Xie ASLP@NPU







Northwestern *ぁ*∦*ゞ*まえき Polytechnical University

### Experiments

| * | Tra | ining data                                                                           | *  | Fea | ture   |
|---|-----|--------------------------------------------------------------------------------------|----|-----|--------|
|   | *   | On-the-fly data simulation using Librispeech + three<br>Microsoft's internal dataset | v  | *   | STF1   |
|   | *   | Additional isotropic noise is used                                                   |    | *   | cosl   |
|   | *   | Overlapping ratio: 0.5 ~ 1.0                                                         |    | *   | Ang    |
|   | *   | Speaker angle: at least 20 degrees                                                   | *  | Net | work   |
|   | *   | Distance between speaker and array: at least 1m                                      |    | *   | U &    |
| * | Eva | aluation data                                                                        |    | *   | Add    |
|   | *   | Two dataset: <i>simu</i> and <i>semi-real</i>                                        | *  | Eva | luatio |
|   | *   | simu - simulated with <i>dev</i> set in Librispeech                                  |    | *   | WEF    |
|   | *   | semi-real - simulated with real recordings                                           |    | *   | Offli  |
|   | *   | Two overlapping ratio: 0.2~0.5 (OV35) & 0.5~1.0 (OV7)                                | 5) |     |        |

- T: 32/16ms
- IPD pair: 1,4/2,5/3,6
- le feature: 1,0/2,0/3,0/4,0/5,0/6,0
- Configurations
- E: 3 Contextual LSTM layers with 512 nodes
- future context for uni-directional LSTMs
- on metric
- R
- ine & Online





#### Results \*

|                          |                   | andation       |                        |                |                      | Diock offini   |                |                        |                |
|--------------------------|-------------------|----------------|------------------------|----------------|----------------------|----------------|----------------|------------------------|----------------|
| Method                   | simu<br>OV35 OV75 |                | semi-real<br>OV35 OV75 |                | Method (history      | ) ov35         | mu<br>OV70     | semi-real<br>OV35 OV7( |                |
| Mixed Beam<br>Clean Beam | 67.40<br>10.67    | 52.40<br>10.56 | 70.92<br>20.34         | 57.63<br>19.71 | UFE (2s)<br>UFE (4s) | 24.10<br>23.66 | 31.40<br>28.85 | 44.05<br>43.49         | 45.13<br>44.06 |
| UFE                      | 16.44             | 18.55          | 35.60                  | 37.54          | E2E-UFE (2s)         | 17.50          | 19.43          | 38.64                  | 39.98          |
| E2E-UFE                  | 16.85             | 18.98          | 33.89                  | 35.92          | E2E-UFE (4s)         | 17.09          | 19.10          | 36.67                  | 39.11          |

Simple FB (Mixed Beam) yielded a high WER even with oracle DoA while Clean Beam sets the upper bound  $\mathbf{x}$ 

Offline evaluation

- The proposed E2E-UFE achieved comparable performance as the original UFE for the simulated data set, while \* demonstrating a clear performance advantage in *semi-real set*
- E2E- UFE shows robustness for different look-back configurations (a 2s or 4s history context), achieving slightly worse \* results than for the offline evaluation on both datasets
- Original UFE resulted in a much larger performance degradation for the online evaluation \*\*
- On the *semi-real* set, E2E-UPE brought about a 12.47% average relative WER reduction compared with UFE using a 2 s history context, while on the *simu* set, the relative reduction increases to 29.71%

[2] Jian Wu, Zhuo Chen, Jinyu Li, Takuya Yoshioka, Zhili Tan, Ed Lin, Yi Luo, Lei Xie, AN END-TO-END ARCHITECTURE OF ONLINE MULTI-CHANNEL SPEECH SEPARATION, Interspeech2020 https://arxiv.org/abs/2009.03141

### Lei Xie ASLP@NPU

**Block online evaluation** 





# **DCUNET Front-end for Multi-channel ASR**

- Adopt the architecture of deep complex Unet (DCUnet) a \* powerful complex-valued Unet-structured speech enhancement model - as the front-end of multi-channel acoustic model
- Integrate them in a multi-task learning (MTL) framework along with cascaded framework
  - **DCUnet-MTL**  $\mathbf{x}$
  - **DCUnet-CAS** \*\*
- Experiments: 1000-hours real-world XiaoMi smart speaker data \* with echoes
  - DCUnet-MTL method brings 12.2% relative CER reduction \* compared with the traditional approach with array processing + single-channel acoustic model
  - It also achieves superior performance over the recently \* proposed neural beamforming method

[3] Yuxiang Kong, Jian Wu, Quandong Wang, Peng Gao, Weiji Zhuang, Yujun Wang, Lei Xie, Multi-Channel Automatic Speech Recognition Using Deep Complex Unet, IEEE SLT2021, https://arxiv.org/abs/2011.09081 Lei Xie ASLP@NPU



Model

Baseline **NNFB DCUnet-MTL DCUnet-CAS** 

Table 4. CER (%) comparison on different subsets

| 16.4919.6714.1612.3615.0815.8018.6113.8212.4514.67 <b>14.6816.1112.5411.1813.23</b> 15.1117.5512.9111.6413.82 |   | Echoed | <5 dB | [5,15) dB | $\geqslant$ 15 dB | Total |
|---------------------------------------------------------------------------------------------------------------|---|--------|-------|-----------|-------------------|-------|
| 15.8018.6113.8212.4514.6714.6816.1112.5411.1813.2315.1117.5512.9111.6413.82                                   |   | 16.49  | 19.67 | 14.16     | 12.36             | 15.08 |
| <b>14.6816.1112.5411.1813.23</b> 15.1117.5512.9111.6413.82                                                    |   | 15.80  | 18.61 | 13.82     | 12.45             | 14.67 |
| 15.11 17.55 12.91 11.64 13.82                                                                                 | , | 14.68  | 16.11 | 12.54     | 11.18             | 13.23 |
|                                                                                                               |   | 15.11  | 17.55 | 12.91     | 11.64             | 13.82 |

www.econocal University

- **Motivation** \*\*
  - Real-world environment: speech overlapping, directional/isotropic noise and reverberation may exist together \*
  - Prior arts: Direct separation on noisy mixtures, cascaded/two-stage (enhancement-separation, separation-• enhancement), recursive separation...
  - **E2E-UFE**[2] and **DCCRN**[4] show great potential on multi-channel separation and single-channel enhancement
- Contribution \*\*
  - We propose an offline processing neural network for simultaneous speech Dereverberation, Enhancement and  $\bullet$ Separation (DESNet)
  - We combine the DNN-WPE, E2E-UFE and DCCRN organically together with differentiable STFT (iSTFT) to form an end-to-end manner
- We evaluate the performance of the proposed model \*
  - Three scenarios: speech enhancement (SE), clean speech separation (CSS) and noisy speech separation (NSS) \*\*
  - Two categories: dereverberated and non-dereverberated

[2] Jian Wu, Zhuo Chen, Jinyu Li, Takuya Yoshioka, Zhili Tan, Ed Lin, Yi Luo, Lei Xie, AN END-TO-END ARCHITECTURE OF ONLINE MULTI-CHANNEL SPEECH SEPARATION, Interspeech2020 https://arxiv.org/abs/2009.03141 [4] Yanxin Hu, Yun Liu, Shubo Lv, Mengtao Xing, Shimin Zhang, Yihui Fu, Jian Wu, Bihong Zhang, Lei Xie, DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement, Interspeech2020, October 25-29, Shanghai, China https://arxiv.org/abs/2008.00264

Lei Xie ASLP@NPU



Northwestern *ぁ∦ょ*ťナダ Polutechnical Universitu



 $\overline{\mathbf{v}}$ 

Dereverberation: DNN-WPE [5]

Lei Xie ASLP@NPL

$$\mathbf{y}_{d\mathrm{rv},t,f}' = \mathbf{y}_{t,f} - \sum_{k=0}^{K-1} \mathbf{G}_{f,k}^{H} \mathbf{y}_{t-\Delta-k,f}$$
 $= \mathbf{y}_{t,f} - \mathbf{G}_{f}^{H} \overline{\mathbf{y}_{t-\Delta,f}},$ 
 $\mathbf{R}_{f} = \sum_{t} \frac{\mathbf{y}_{t-\Delta,f} \mathbf{y}_{t,f}^{H}}{\Lambda_{t,f}},$ 
 $\mathbf{r}_{f} = \sum_{t} \frac{\overline{\mathbf{y}_{t-\Delta,f}} \mathbf{y}_{t,f}^{H}}{\Lambda_{t,f}},$ 
 $\mathbf{G}_{f} = \mathbf{R}_{f}^{-1} \mathbf{r}_{f}.$ 

### \* Angle Feature and Fixed Beamforming $\mathbf{b}_{i,f} = \mathbf{w}_{i,f}^H \mathbf{Y}_{drv,f}'$ , $\mathbf{a}_{ heta,f} =$

[2] Yihui Fu, Jian Wu, Yanxin Hu, Mengtao Xing, Lei Xie, DESNet: A Multi-channel Network for Simultaneous Speech Dereverberation, Enhancement and Separation, IEEE SLT2021, <u>https://arxiv.org/abs/2011.02131</u>
[5] Keisuke Kinoshita, Marc Delcroix, Haeyong Kwon, Takuma Mori, and Tomohiro Nakatani, "Neural network-based spectrum estimation for online wpe dere- verberation.," in Interspeech, 2017, pp. 384–388.

$$\mathbf{\Lambda}_m = \mathrm{NN}(|\mathbf{Y}_m|),$$

$$\mathbf{\Lambda} = \sum_m \mathbf{\Lambda}_m / M$$

$$=\sum_{m,n\in\psi}\cos(\mathbf{o}_{mn,f}-\mathbf{r}_{\theta,mn,f})/P$$



Northwestern *演員ス集大導* Polytechnical University

### Speech Unmixing by DCCRN [3]

- A better network can benefit the following selection of the angle and beam features, as well as assist the speech extraction for a better estimation of the final masks
- DCCRN follows the UNet structure, but using complex-valued convolutional encoders/decoders and real/imaginary LSTMs to model the context dependency.

$$\begin{split} \mathbf{W} & \circledast \mathbf{Y} = \begin{bmatrix} \mathbf{W}_r \\ \mathbf{W}_i \end{bmatrix} & \circledast \begin{bmatrix} \mathbf{Y}_r \\ \mathbf{Y}_i \end{bmatrix} = \begin{bmatrix} \mathbf{W}_r * \mathbf{Y}_r - \mathbf{W}_i * \mathbf{Y}_i \\ \mathbf{W}_r * \mathbf{Y}_i + \mathbf{W}_i * \mathbf{Y}_r \end{bmatrix} \\ \mathbf{M}_{c,\text{mag}} &= anh(\sqrt{\mathbf{H}_{c,r}^2 + \mathbf{H}_{c,i}^2}), \\ \mathbf{M}_{c,\text{pha}} &= rctan2(\mathbf{H}_{c,i}, \mathbf{H}_{c,r}). \end{split}$$

$$\mathbf{Y}_{c}^{U} = \mathbf{M}_{c}^{U} \odot \mathbf{Y}_{\mathrm{drv},0}^{\prime}$$

[4] Yanxin Hu, Yun Liu, Shubo Lv, Mengtao Xing, Shimin Zhang, Yihui Fu, Jian Wu, Bihong Zhang, Lei Xie, DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement, Interspeech2020, October 25-29, Shanghai, China <u>https://arxiv.org/abs/2008.00264</u>

Lei Xie ASLP@NPU



Polytechnical University

## **Demo: Speech Enhancement using DCCRN**



Lei Xie ASLP@NPU

More samples : <u>https://huyanxin.github.io/DeepComplexCRN/</u>



Street-enh





Canteen-enh





Northwestern アルスポナヨ **Polytechnical University** 

**Attentional Feature Selection**  $\bigstar$ 

 $\mathbf{V}_{c}^{U} = |\mathbf{M}_{c}^{U}|\mathbf{W}_{p},$ 

 $\mathbf{V}_{\theta}^{A} = \mathbf{A}_{\theta} \mathbf{W}_{a},$ 

$$\begin{split} s_{c,\theta,t} &= (\sqrt{D})^{-1} \left( \mathbf{V}_{c,t}^U \right)^T \mathbf{V}_{\theta,t}^A. \\ \hat{s}_{c,\theta} &= (T)^{-1} \sum_t s_{c,\theta,t}, \\ w_{c,\theta} &= \text{softmax}_{\theta}(\hat{s}_{c,\theta}). \end{split} \quad \hat{\mathbf{A}}_c = \sum_{\theta} w_{c,\theta} \mathbf{A}_{\theta}. \end{split}$$

- **Speech Extraction**  $\bigstar$ 
  - Concatenate unmixed speech and attentional features along frequency dimension to estimate the \* final enhanced and separated mask of two speakers





Loss Function  $\mathbf{x}$ 

 $\text{SI-SNR}(\mathbf{s}_i, \mathbf{x}_j) = 20 \log_{10} \frac{\|\boldsymbol{\alpha} \cdot \mathbf{x}_j\|}{\|\mathbf{s}_i - \boldsymbol{\alpha} \cdot \mathbf{x}_j\|}$ 

Proposed **Symphonic Loss**: the loss calculation of each training chunk in one mini-batch is different \* If current mixture chunk contains one speaker, namely in SE track, we only optimize the first branch 

- of the network
- For NSS and CSS tracks, we optimize both branches of the network using permutation invariant training (PIT):

$$\mathcal{L} = -\max_{\phi \in \mathcal{P}} \sum_{(i,j) \in \phi} \operatorname{Si-SNR}(\mathbf{s}_i, \mathbf{x}_j) / N_{\mathcal{P}}$$

| Table 1. SNR (SDR) range (dB) in each stage. |          |         |          |         |  |  |  |  |  |  |
|----------------------------------------------|----------|---------|----------|---------|--|--|--|--|--|--|
| Training Enoch                               | SE       | CSS     | NSS      |         |  |  |  |  |  |  |
| Hanning Epoch                                | 5L       | 000     | SE       | SS      |  |  |  |  |  |  |
| $1 \sim 5$                                   | [5, 10]  | [-2, 2] | ×        | ×       |  |  |  |  |  |  |
| $6 \sim 10$                                  | [0, 10]  | ×       | [15, 20] | [-2, 2] |  |  |  |  |  |  |
| $11 \sim 15$                                 | [-2, 10] | ×       | [10, 20] | [-4, 4] |  |  |  |  |  |  |
| $16 \sim 20$                                 | [-5, 10] | ×       | [5, 20]  | [-5, 5] |  |  |  |  |  |  |

**Staged SNR Strategy** \*



### Experiments

| * | Tra | ining & evaluation data                            | * | Fea | ture    |
|---|-----|----------------------------------------------------|---|-----|---------|
|   | *   | On-the-fly data simulation using Librispeech + DNS |   | *   | STFT:   |
|   |     | noise                                              |   | *** | Beam    |
|   | *   | Additional isotropic noise is used                 |   | *   | Angle   |
|   | *   | Sound source angle : at least 20 $^\circ$          | * | Net | work C  |
|   | *   | Source-Mic distance: 1-5m                          |   | *   | Atten   |
|   | *   | RT60: 0.1-0.5s                                     |   | *   | DCCR    |
|   | *   | Topological structure : 4 mics with 5cm radius     |   | **  | Extrac  |
| * | Sce | nario                                              | * | Eva | luation |
|   | *   | Speech enhancement (SE)                            |   | *** | PESQ    |
|   | *   | Clean source separation (CSS)                      |   | *** | Si-SNI  |
|   | *   | Noisy source separation (NSS)                      |   |     |         |

- 32/16ms
- number: 18
- e feature number: 36
- Configurations
- tion embedding size: 257
- N: 6 layers complex CNN
- ction: 3 layers LSTM with 512 hidden size
- metric
- for SE
- R for CSS and NSS



#### Results $\mathbf{x}$

| Table 2. Results of non-dereverberated SE and SS. |           |      |        |         |           |                   |          |          |       |                   |          |         |       |
|---------------------------------------------------|-----------|------|--------|---------|-----------|-------------------|----------|----------|-------|-------------------|----------|---------|-------|
| Model                                             | SE (PESQ) |      |        |         |           | CSS (SI-SNR (dB)) |          |          |       | NSS (SI-SNR (dB)) |          |         |       |
| SNR (SDR)                                         | -5        | 0    | 5      | 10      | Avg.      | -5                | -2       | 0        | Avg.  | -5                | -2       | 0       | Avg.  |
| Mixed                                             | 1.51      | 1.87 | 2.22   | 2.57    | 2.04      | 0.00              | 0.00     | 0.00     | 0.00  | -1.63             | -0.88    | -0.76   | -1.09 |
| CACGMM                                            | 2.14      | 2.40 | 2.69   | 2.88    | 2.53      | 4.50              | 6.16     | 6.48     | 5.71  | 1.72              | 4.08     | 4.46    | 3.42  |
| Proposed DESNet                                   | 2.55      | 2.87 | 3.17   | 3.41    | 3.00      | 10.18             | 9.98     | 9.78     | 9.98  | 7.16              | 7.73     | 7.77    | 7.55  |
| <ul> <li>Staged SNR</li> </ul>                    | 2.51      | 2.87 | 3.16   | 3.40    | 2.99      | 9.88              | 8.54     | 7.87     | 8.76  | 7.16              | 6.65     | 6.19    | 6.67  |
| <ul> <li>Symphonic Loss</li> </ul>                | 2.36      | 2.73 | 3.06   | 3.33    | 2.87      | 9.61              | 9.40     | 9.26     | 9.42  | 6.70              | 7.31     | 7.31    | 7.11  |
| - BF Feature                                      | 2.29      | 2.65 | 2.97   | 3.23    | 2.79      | 8.77              | 8.65     | 8.44     | 8.62  | 5.84              | 6.32     | 6.31    | 6.16  |
| DCCRN                                             | 2.25      | 2.61 | 2.94   | 3.20    | 2.75      | 7.78              | 6.04     | 5.37     | 6.40  | 5.73              | 4.62     | 4.07    | 4.81  |
| Conv-TasNet                                       | 2.00      | 2.29 | 2.53   | 2.71    | 2.38      | 6.03              | 6.67     | 6.72     | 6.47  | 3.93              | 5.09     | 5.23    | 4.75  |
| DPRNN                                             | 2.22      | 2.55 | 2.84   | 3.09    | 2.68      | 9.09              | 9.36     | 9.32     | 9.26  | 6.37              | 7.32     | 7.42    | 7.04  |
| FasNet                                            | 2.24      | 2.58 | 2.89   | 3.14    | 2.71      | 9.42              | 9.35     | 9.02     | 9.26  | 6.91              | 7.63     | 7.41    | 7.32  |
|                                                   |           |      | Table  | 3. Resi | ilts of d | ereverbe          | rated SI | E and SS | 5.    |                   |          |         |       |
| Model                                             |           | S    | E (PES | O)      |           | С                 | SS (SI-S | SNR (dF  | 3))   | N                 | ASS (SI- | SNR (dł | 3))   |
| SNR (SDR)                                         | -5        | 0    | 5      | 10      | Avg.      | -5                | -2       | 0        | Avg.  | -5                | -2       | 0       | Ävg.  |
| Mixed                                             | 1.41      | 1.71 | 2.02   | 2.31    | 1.86      | -1.38             | -0.75    | -0.64    | -0.92 | -2.63             | -1.54    | -1.35   | -1.84 |
| CACGMM                                            | 2.09      | 2.36 | 2.63   | 2.83    | 2.48      | 3.97              | 5.54     | 5.85     | 5.12  | 1.57              | 3.90     | 4.27    | 3.25  |
| Proposed DESNet                                   | 2.36      | 2.65 | 2.90   | 3.12    | 2.76      | 8.07              | 8.18     | 8.14     | 8.13  | 6.38              | 6.65     | 6.50    | 6.51  |
| <ul> <li>Staged SNR</li> </ul>                    | 2.26      | 2.57 | 2.84   | 3.06    | 2.68      | 7.96              | 8.14     | 8.03     | 8.04  | 5.56              | 6.36     | 6.18    | 6.03  |
| <ul> <li>Symphonic Loss</li> </ul>                | 2.32      | 2.63 | 2.89   | 3.11    | 2.74      | 7.74              | 7.88     | 7.42     | 7.68  | 5.68              | 6.45     | 6.50    | 6.21  |
| - DNN-WPE                                         | 2.17      | 2.49 | 2.77   | 3.01    | 2.61      | 7.36              | 7.66     | 7.59     | 7.54  | 5.20              | 5.68     | 5.65    | 5.51  |
| WPE-DCCRN                                         | 2.16      | 2.49 | 2.78   | 3.00    | 2.61      | 6.64              | 6.09     | 5.77     | 6.17  | 5.16              | 5.07     | 4.61    | 4.95  |

- In both non-dereverberated and dereberberated SE and SS scenarios, DESNet suppress CACGMM, DCCRN and time  $\mathbf{x}$ domain approaches including Conv-Tasnet, DPRNN and FasNet
- Staged SNR, symphonic loss and BF Feature are effective for better enhancement and separation performance •
- The learnt attentional weight fits the actual speaker's direction perfectly •
- Future work: optimizing speech dereverberation, enhancement and separation with acoustic model to further improve \* the speech recognition accuracy in real environment scenarios



Fig. 4. Example of the learnt weights on angle feature in a two-speaker mixture utterance.



# **Demo: DesNet**



[2] Yihui Fu, Jian Wu, Yanxin Hu, Mengtao Xing, Lei Xie, DESNet: A Multi-channel Network for Simultaneous Speech Dereverberation, Enhancement and Separation, IEEE SLT2021, <u>https://arxiv.org/abs/2011.02131</u>

More demos: <a href="https://felixfuyihui.github.io/DesNet\_Demo/">https://felixfuyihui.github.io/DesNet\_Demo/</a>

Lei Xie ASLP@NPU



Northwestern 液非ス素未尊 Polytechnical University

## Thanks!



Follow us thru Wechat

Visit us at www.npu-aslp.org

