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What is optimal score?

* Answer: they should lead to minimum
Bayes risk

 Maximum a Posterior (MAP) principle
c* = armgax. p(c|x)

* For speaker identification, it is simple
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Optimal score for verification

* Two-class problem

e HO: spoken by speaker k

* H1: not spoken by speaker k
* MAP principle

* p(HO|x) = p(x|HO) /(p(x|HO) + p(x|H1))
* Only the likelihood ratio (LR) matters:

p(x|Iy) _ pi(z)
plz|Hy)  p(z)

* It is widely used in GMM-UBM era, but derived from hypothesis test.

Dong Wang, "Remakrs on optimal scores for speaker recognition", 2020, http://arxiv.org/abs/2010.04862
Dong Wang, "A Simulation Study on Optimal Scores for Speaker Recognition", EURASIP Journal on Audio, Speech, and Music Processing, 2020.



Normalized Likelihood

* We call the likelihood ratio p,(x)/p(x) Normalized Likelihood

p(z|Ho)  pr(x)

NEEIR) = almy) ~ pla)

* It is a speaker-dependent likelihood normalized by a speaker-
independent likelihood

* It is a special LR, different from other forms, e.g., the LR in PLDA, i.e.,
p(x,y)/p(x)p(y)
* It is the simple, general form that leads to MBR decision.



We employ NL to scoring embeddings (back-
end modeling)

* Suppose both prior p(u) and condition
p(x|u) are Gaussians

p(p) = N(ps;0,Te*)

p(z|p) = N(z;p, 1)

* We can compute H1

p(x) = N(z;0,1(e* + 7))



Now compuet HO

e Suppose we enroll speaker k using
X1¥ X and need compute H1.

pi(x) = N(@; pr, 0°T)

* Compute p(u|xs* XX,
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Compuet NL

* Now marginalize over u:
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Remark 1: It equals to PLDA with linear
(Gaussian

e PLDA score is a likelihood ratio in a different form

p(ﬂ‘:jﬂih ---:3»‘-”)
p(x)p(z1, ..., Tn)

LRprLpa(T) =

e But they are the same!

_ p@ley, . xn) [ p(lp)p(pley, ... 2,)dp
LRprpa(x) = (@) = i}




Remarkl: It equals to PLDA with linear
Gaussian (2)

* What is new?
* NL computes the score in a more efficient way
* NL divides the scoring into three steps: enroll, prediction, normalization

pElz1, ... %0) _ [pElw)pplz:, ... 20)dp
p(x) p(x)

LRPLDA(iF) =

* NL allows separate models for HO and H1.
* Anyway, all the properties that we will discuss are shared by PLDA.



Remark 2: Cosine and Euclidean score are
appxomiation of NL

e Reformulate NL

'H,:;;Eél
+ €2)(ni€?

log NL(z|k) o< =1 7— 5 |12l + |2k * — 2 cos(z, ) ||| |12 |]
(o +0?)

* When € Is large, it converts to Euclidean score
* When o is large, it converts to Cosine score



Simulation

EER

—— Coslne
= Euclidean
-w= ML
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Remark 3: NL score is optimal for both SV and
S

* The only difference is in the normalization

 We never need to consider different scores for different
tasks.

plz|Hy)  pr(x)

NLEE) = oE@wm) = o)




Remark 4: NL is invariant to any invertible
transform

* Any invertible transform will lead to the same NL score

* It is a very important property that allows us to perform distribution
manipulation

NL(g(@)|g(@1), .-, 9(®n,)) = _,?;(( (;) (’f”)""g(fﬁ,‘f))
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= NI(zl®i; .- Z5.)




Remark 5: dimension is important

* Gaussian annulus theorem:
nearly all the high-dimensional
Gaussian vectors concentrate on
a thin spherical surface.

* Length-norm employs this
property.



Remark 5: dimension is important(2)

* More dimensions lead to better discrimination

* If 02 < O(e4d), any two vectors tend to be separated
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Remark 6: Direction is imporant

* For any vector x as a pole, most other
vector concentrate on the equator

* Most of the vectors are orthogonal




All seem interesting, but...

* Almost all the remarks are based on the linear Gaussian assumption

* If the vectors are, we get optimal decisions, but are they?
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Consequence of incorrect distributions

* Non-Gaussianality and Non-homogeneity corrupt NL

—+— Gaussian el Homogeneous re ference
-4-- Laplacian g

EER
]
EER

w

Dong Wang, "A Simulation Study on Optimal Scores for Speaker Recognition", EURASIP Journal on Audio, Speech,
and Music Processing, 2020.



* Transform Non-Gaussian to Gaussian
* Transform Non-homogeneous to homogeneous



Deep normalization: make distributions
Gaussian

* Transform to non-Gaussian to Gaussian

m(x) p1(x) p2(x) p3(x)

- B

log pg(x) = log pg(z) + log | det(dz/dx)]

K
= logpe(z) H ) _ log|det(dh;/dh;_;)|
=1




Deep normalization (2)

* Try to make each class Gaussian
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Deep normalization (2)

Step 1

Step 2
Step 3 :

Step 4 |
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Deep normalization (3)

SITW CNCeleb

Cosine PLDA Cosine PLDA

TDNN x-vector [512] 17.20 5.30 16.32 13.03
LDA [200] 5.82 3.96 17.52 13.50)

DNF [512] 8.53 3.66 14.22 11.82

DNE-LDA [200] 5.41 3.42 15.18 13.22

TDNN + Att. x-vector [512] 4.37 3.66 15.08 13.05
LDA [200] 3.72 2.73 18.34 13.97

DNF [512] 5.00 2 14.69 12.07

DNF-LDA [200] 3.72 251 15.45 13.66

ResNet-34 + Att. x-vector [512] 2.73 2.52 13.94 13.11
LDA [200] 2.60 2.00) 14.90 12.58

DNF [512] 347 1.94 13.86 11.61

DNF-LDA [200] 2.57 1.89 14.04 12.32

ResNet-34 + AAM x-vector [512] 5.71 2.82 15.80 14.02
LDA [200] 2.73 1.86 16.67 13.42

DNF [512] 4.89 2.32 14.66 12.80

DNF-LDA [200] 2.93 1.83 14.96 12.59

* Yungi Cai, Lantian Li, Andrew Abel, Xiaoyan Zhu, Dong Wang, Deep normalization for speaker vectors, IEEE TASLP 2020.



Maximum Gaussian training: Make
distributions homogeneous

* Vanilla deep norm by ML cannot ensure homogeneous
* Train to maximizing Gaussian, according to Remark 5 and 6.
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Maximum Gaussian training (2

* MG training is much more stable
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Maximum Gaussian training (3)

TABLE III: EER(%) results on SITW and CNCeleb with DNF variants.

\ Between-Class ~ Within-Class SITW CNCeleb
Models . . .
Criterion Cnitenon Cosme PLDA Cosme PLDA
x-vector N/A NIA 17.20 5.30 16.32 13.03
DNF-N-L N/A ML 8.53 3.66 14.22 11.82
DNF-L-L ML ML 10,47 3.72 15.83 11.39
DNF-G-G MG MG 6.30 iy 12.13 11.72
DNF-G-L MG ML 6.89 345 13.99 11.46

DNF-G-LG MG ML+MG 6.42 3.36 12.96 11.51

* Yunqi Cai, Lantian Li, Andrew Abel, Xiaoyan Zhu, Dong Wang, “Maximum Gaussian
training for speaker normalization” ,https://arxiv.org/abs/2010. 16148



Further remarks

* |Is the deepnorm really optimal?
* According remark 4, any invertible transform does not change the NL score

 The NL score in the latent space is as optimal as in the observation space,
however the data is more Gaussian and so amiable for NL modeling.

* With deep norm, it seems we don’t need try to derive other powerful
scores and score calibration...

* Most research focus on discrimination, though normalization should
be emphasized.



A case study: Tackle the enroll-test
conditional mismatch

* We treat the conditional mismatch as a problem of mismatch on
statistics

* NL provides an elegent framework for deal with ‘decoupled’
computation on mismatched conditions

Prediction

J p(z|p)p(plz,, ...z, )dp
p(z)




A case study: Tackle the enroll-test conditional
mismatch (2)

Methods
MDT DAT

AND-AND 0.797 -

AND-Mic 2146 1.151 1245
AND-108 1.425 1161 1312

Mic-AND 217> 1161 1.189
Mic-Mic 0.778 - -
Mic-108 22531 1293 1481

105-AND 1.599 1156 1.184
10S8-Mic 2216 1137 1231
10S8-108 0.920 - -

Cases Base

e Lantian Li, Yang Zhang, Jiawen Kang, Thomas Fang Zheng, Dong Wang, SQUEEZING VALUE OF CROSS-
DOMAIN LABELS: A DECOUPLED SCORING APPROACH FOR SPEAKER VERIFICATION, submitted to ICASSP 2021.



Conclusions

* Normalization likelihood is the optimal score for both SV and SI, in
terms of minimum Bayes risk. It is equal to the PLDA likelihood ratio,
but with clear advantage.

* NL requires regularized distributions. Deep normalization can do that.

* NL brings many interesting things: decoupling, interpretation,
nonlinear model...

* Finally, NL provides a ‘bound’ of the performance, which seems an
advantage of the embedding approach, when compared to end-to-
end methods.
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