Remarks on Optimal Scores for Speaker Recognition

Dong Wang 2020/11/21

What is optimal score?

- Answer: they should lead to minimum Bayes risk
- Maximum a Posterior (MAP) principle

 $c^* = \operatorname{armgax}_c p(c|x)$

• For speaker identification, it is simple

c2

c1

Optimal score for verification

- Two-class problem
 - H0: spoken by speaker k
 - H1: not spoken by speaker k
- MAP principle
 - p(HO|x) = p(x|HO) / (p(x|HO) + p(x|H1))
- Only the likelihood ratio (LR) matters:

$$\frac{p(\boldsymbol{x}|H_0)}{p(\boldsymbol{x}|H_1)} = \frac{p_k(\boldsymbol{x})}{p(\boldsymbol{x})}$$

• It is widely used in GMM-UBM era, but derived from hypothesis test. Dong Wang, "Remakrs on optimal scores for speaker recognition", 2020, http://arxiv.org/abs/2010.04862 Dong Wang, "A Simulation Study on Optimal Scores for Speaker Recognition", EURASIP Journal on Audio, Speech, and Music Processing, 2020.

Normalized Likelihood

• We call the likelihood ratio $p_k(x)/p(x)$ Normalized Likelihood

$$NL(\boldsymbol{x}|k) = \frac{p(\boldsymbol{x}|H_0)}{p(\boldsymbol{x}|H_1)} = \frac{p_k(\boldsymbol{x})}{p(\boldsymbol{x})}$$

- It is a speaker-dependent likelihood normalized by a speakerindependent likelihood
- It is a special LR, different from other forms, e.g., the LR in PLDA, i.e., p(x,y)/p(x)p(y)
- It is the simple, general form that leads to MBR decision.

We employ NL to scoring embeddings (backend modeling)

 Suppose both prior p(u) and condition p(x|u) are Gaussians

$$p(\boldsymbol{\mu}) = N(\boldsymbol{\mu}; \mathbf{0}, \mathbf{I}\boldsymbol{\epsilon}^2)$$

$$p(\boldsymbol{x}|\boldsymbol{\mu}) = N(\boldsymbol{x};\boldsymbol{\mu},\sigma^2\mathbf{I})$$

• We can compute H1

$$p(\boldsymbol{x}) = N(\boldsymbol{x}; \boldsymbol{0}, \mathbf{I}(\boldsymbol{\epsilon}^2 + \sigma^2))$$

Now compuet H0

• Suppose we enroll speaker k using x_1^{k} ,..., x_{nk}^{k} , and need compute H1.

 $p_k(\boldsymbol{x}) = N(\boldsymbol{x}; \boldsymbol{\mu}_k, \sigma^2 \mathbf{I})$

• Compute $p(u|x_1^{k}, ..., x_{nk}^{k})$.

$$p(\boldsymbol{\mu}_k | \boldsymbol{x}_1^k, \dots \boldsymbol{x}_{n_k}^k) = N(\boldsymbol{\mu}_k; \frac{n_k \boldsymbol{\epsilon}^2}{n_k \boldsymbol{\epsilon}^2 + \sigma^2} \bar{\boldsymbol{x}}_k, \mathbf{I} \frac{\sigma \boldsymbol{\epsilon}^2}{n_k \boldsymbol{\epsilon}^2 + \sigma^2})$$

Compuet NL

• Now marginalize over u:

$$p_{k}(\boldsymbol{x}) = p(\boldsymbol{x}|\boldsymbol{x}_{1}^{k},...,\boldsymbol{x}_{n_{k}}^{k})$$

$$= \int p(\boldsymbol{x}|\boldsymbol{\mu}_{k})p(\boldsymbol{\mu}_{k}|\boldsymbol{x}_{1}^{k},...\boldsymbol{x}_{n_{k}}^{k})d\boldsymbol{\mu}_{k}$$

$$= N(\boldsymbol{x};\frac{n_{k}\epsilon^{2}}{n_{k}\epsilon^{2}+\sigma^{2}}\bar{\boldsymbol{x}}_{k},(\sigma^{2}+\mathbf{I}\frac{\sigma\epsilon^{2}}{n_{k}\epsilon^{2}+\sigma^{2}}))$$

• NL score obtained:

$$NL(\boldsymbol{x}|k) = \frac{p(\boldsymbol{x}|\boldsymbol{x}_1, \dots, \boldsymbol{x}_{n_k})}{p(\boldsymbol{x})}$$
$$\log NL(\boldsymbol{x}|k) \propto - \left\|\frac{\boldsymbol{x} - \tilde{\boldsymbol{\mu}}_k}{\sqrt{\sigma^2 + \frac{\boldsymbol{\epsilon}^2 \sigma^2}{n_k \boldsymbol{\epsilon}^2 + \sigma^2}}}\right\|^2 + \left\|\frac{\boldsymbol{x}}{\sqrt{\boldsymbol{\epsilon}^2 + \sigma^2}}\right\|^2$$

Remark 1: It equals to PLDA with linear Gaussian

• PLDA score is a likelihood ratio in a different form

$$LR_{PLDA}(\boldsymbol{x}) = \frac{p(\boldsymbol{x}, \boldsymbol{x}_1, ..., \boldsymbol{x}_n)}{p(\boldsymbol{x})p(\boldsymbol{x}_1, ..., \boldsymbol{x}_n)}$$

• But they are the same!

$$LR_{PLDA}(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{x}_1,...,\boldsymbol{x}_n)}{p(\boldsymbol{x})} = \frac{\int p(\boldsymbol{x}|\boldsymbol{\mu})p(\boldsymbol{\mu}|\boldsymbol{x}_1,...,\boldsymbol{x}_n)\mathrm{d}\boldsymbol{\mu}}{p(\boldsymbol{x})}$$

Remark1: It equals to PLDA with linear Gaussian (2)

- What is new?
 - NL computes the score in a more efficient way
 - NL divides the scoring into three steps: enroll, prediction, normalization

$$LR_{PLDA}(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{x}_1,...,\boldsymbol{x}_n)}{p(\boldsymbol{x})} = \frac{\int p(\boldsymbol{x}|\boldsymbol{\mu})p(\boldsymbol{\mu}|\boldsymbol{x}_1,...,\boldsymbol{x}_n)\mathrm{d}\boldsymbol{\mu}}{p(\boldsymbol{x})}$$

- NL allows separate models for H0 and H1.
- Anyway, all the properties that we will discuss are shared by PLDA.

Remark 2: Cosine and Euclidean score are appxomiation of NL

• Reformulate NL

$$\log NL(\boldsymbol{x}|k) \propto -\left\{\frac{n_k \boldsymbol{\epsilon}^4}{(\sigma^2 + \boldsymbol{\epsilon}^2)(n_k \boldsymbol{\epsilon}^2 + \sigma^2)} ||\boldsymbol{x}||^2 + ||\tilde{\boldsymbol{\mu}}_k||^2 - 2\cos(\boldsymbol{x}, \tilde{\boldsymbol{\mu}}_k)||\boldsymbol{x}|| ||\tilde{\boldsymbol{\mu}}_k||\right\}$$

- When ϵ is large, it converts to Euclidean score
- When σ is large, it converts to Cosine score

Simulation

Remark 3: NL score is optimal for both SV and SI

- The only difference is in the normalization
- We never need to consider different scores for different tasks.

$$NL(\boldsymbol{x}|k) = \frac{p(\boldsymbol{x}|H_0)}{p(\boldsymbol{x}|H_1)} = \frac{p_k(\boldsymbol{x})}{p(\boldsymbol{x})}$$

Remark 4: NL is invariant to any invertible transform

- Any invertible transform will lead to the same NL score
- It is a very important property that allows us to perform distribution manipulation

$$NL(g(\boldsymbol{x})|g(\boldsymbol{x}_{1}),...,g(\boldsymbol{x}_{n_{k}})) = \frac{p'(g(\boldsymbol{x}),g(\boldsymbol{x}_{1}),...,g(\boldsymbol{x}_{n_{k}}))}{p'(g(\boldsymbol{x}_{1}))p'(g(\boldsymbol{x}_{1}),...,g(\boldsymbol{x}_{n_{k}}))}$$
$$= \frac{J(\boldsymbol{x})\prod_{i=1}^{n}J(\boldsymbol{x}_{i})p(\boldsymbol{x},\boldsymbol{x}_{1},...,\boldsymbol{x}_{n_{k}})}{\{J(\boldsymbol{x})p(\boldsymbol{x})\}\{\prod_{i=1}^{n}J(\boldsymbol{x}_{i})p(\boldsymbol{x}_{1},...,\boldsymbol{x}_{n_{k}})\}}$$
$$= NL(\boldsymbol{x}|\boldsymbol{x}_{1},...,\boldsymbol{x}_{n_{k}})$$

Remark 5: dimension is important

- Gaussian annulus theorem: nearly all the high-dimensional Gaussian vectors concentrate on a thin spherical surface.
- Length-norm employs this property.

Remark 5: dimension is important(2)

- More dimensions lead to better discrimination
- If $\sigma^2 < O(\epsilon^4 d)$, any two vectors tend to be separated

Remark 6: Direction is imporant

- For any vector x as a pole, most other vector concentrate on the equator
- Most of the vectors are orthogonal

All seem interesting, but...

- Almost all the remarks are based on the linear Gaussian assumption
- If the vectors are, we get optimal decisions, but are they?

Consequence of incorrect distributions

Non-Gaussianality and Non-homogeneity corrupt NL

Dong Wang, "A Simulation Study on Optimal Scores for Speaker Recognition", EURASIP Journal on Audio, Speech, and Music Processing, 2020.

- Transform Non-Gaussian to Gaussian
- Transform Non-homogeneous to homogeneous

Deep normalization: make distributions Gaussian

• Transform to non-Gaussian to Gaussian

Deep normalization (2)

• Try to make each class Gaussian

Deep normalization (2)

Deep normalization (3)

		SITW		CNCeleb	
		Cosine	PLDA	Cosine	PLDA
TDNN	x-vector [512]	17.20	5.30	16.32	13.03
	LDA [200]	5.82	3.96	17.52	13.50
	DNF [512]	8.53	3.66	14.22	11.82
	DNF-LDA [200]	5.41	3.42	15.18	13.22
TDNN + Att.	x-vector [512]	4.37	3.66	15.08	13.05
	LDA [200]	3.72	2.73	18.34	13.97
	DNF [512]	5.00	2.71	14.69	12.07
	DNF-LDA [200]	3.72	2.57	15.45	13.66
ResNet-34 + Att.	x-vector [512]	2.73	2.52	13.94	13.11
	LDA [200]	2.60	2.00	14.90	12.58
	DNF [512]	3.47	1.94	13.86	11.61
	DNF-LDA [200]	2.57	1.89	14.04	12.32
ResNet-34 + AAM	x-vector [512]	5.71	2.82	15.80	14.02
	LDA [200]	2.73	1.86	16.67	13.42
	DNF [512]	4.89	2.32	14.66	12.80
	DNF-LDA [200]	2.93	1.83	14.96	12.59

• Yunqi Cai, Lantian Li, Andrew Abel, Xiaoyan Zhu, Dong Wang, Deep normalization for speaker vectors, IEEE TASLP 2020.

Maximum Gaussian training: Make distributions homogeneous

- Vanilla deep norm by ML cannot ensure homogeneous
- Train to maximizing Gaussian, according to Remark 5 and 6.

Length: $N(\sqrt{\epsilon d}, 0.5)$

Angle: N(90°

Angle metric:

Maximum Gaussian training (2)

• MG training is much more stable

Maximum Gaussian training (3)

TABLE III: EER(%) results on SITW and CNCeleb with DNF variants.

Models	Between-Class	Within-Class	SITW		CNCeleb	
	Criterion	Criterion	Cosine	PLDA	Cosine	PLDA
x-vector	N/A	N/A	17.20	5.30	16.32	13.03
DNF-N-L DNF-L-L	N/A ML	ML ML	8.53 10.47	3.66 3.72	14.22 15.83	11.82 11.39
DNF-G-G	MG	MG	6.30	3.37	12.13	11.72
DNF-G-L DNF-G-LG	MG MG	ML ML+MG	6.89 6.42	3.45 3.36	13.99 12.96	11.46 11.51

• Yunqi Cai, Lantian Li, Andrew Abel, Xiaoyan Zhu, Dong Wang, "Maximum Gaussian training for speaker normalization", https://arxiv.org/abs/2010.16148

Further remarks

- Is the deepnorm really optimal?
 - According remark 4, any invertible transform does not change the NL score
 - The NL score in the latent space is as optimal as in the observation space, however the data is more Gaussian and so amiable for NL modeling.
- With deep norm, it seems we don't need try to derive other powerful scores and score calibration...
- Most research focus on discrimination, though normalization should be emphasized.

A case study: Tackle the enroll-test conditional mismatch

- We treat the conditional mismatch as a problem of mismatch on statistics
- NL provides an elegent framework for deal with 'decoupled' computation on mismatched conditions

A case study: Tackle the enroll-test conditional mismatch (2)

Cases	Base	Methods			
Cases	Dase	MDT	DAT	DSD	
AND-AND	0.797	- 	()), et		
AND-Mic	2.146	1.151	1.245	0.981	
AND-iOS	1.425	1.161	1.312	0.623	
Mic-AND	2.175	1.161	1.189	0.712	
Mic-Mic	0.778	-	-	-	
Mic-iOS	2.251	1.293	1.481	0.812	
iOS-AND	1.599	1.156	1.184	0.755	
iOS-Mic	2.216	1.137	1.231	1.052	
iOS-iOS	0.920		1.	-	

• Lantian Li, Yang Zhang, Jiawen Kang, Thomas Fang Zheng, Dong Wang, SQUEEZING VALUE OF CROSS-DOMAIN LABELS: A DECOUPLED SCORING APPROACH FOR SPEAKER VERIFICATION, submitted to ICASSP 2021.

Conclusions

- Normalization likelihood is the optimal score for both SV and SI, in terms of minimum Bayes risk. It is equal to the PLDA likelihood ratio, but with clear advantage.
- NL requires regularized distributions. **Deep normalization** can do that.
- NL brings many interesting things: decoupling, interpretation, nonlinear model...
- Finally, NL provides a 'bound' of the performance, which seems an advantage of the embedding approach, when compared to end-to-end methods.

Reference papers

- Dong Wang, "*Remakrs on optimal scores for speaker recognition*", 2020, http://arxiv.org/abs/2010.04862
- Dong Wang, "A Simulation Study on Optimal Scores for Speaker Recognition", EURASIP Journal on Audio, Speech, and Music Processing, 2020. https://arxiv.org/pdf/2004.04095.pdf
- Yunqi Cai, Lantian Li, Andrew Abel, Xiaoyan Zhu, Dong Wang, "Maximum Gaussian training for speaker normalization", https://arxiv.org/abs/2010.16148
- Yunqi Cai, Lantian Li, Andrew Abel, Xiaoyan Zhu, Dong Wang, *Deep normalization for speaker vectors*, IEEE TASLP 2020. https://arxiv.org/pdf/2004.04095
- Lantian Li, Dong Wang, Thomas Fang Zhang, Neural Discriminant Analysis for Deep Speaker Embedding, Interspeech 2020. https://arxiv.org/pdf/2005.11905
- Lantian Li, Yang Zhang, Jiawen Kang, Thomas Fang Zheng, Dong Wang, SQUEEZING VALUE OF CROSS-DOMAIN LABELS: A DECOUPLED SCORING APPROACH FOR SPEAKER VERIFICATION, submitted to ICASSP 2021. https://arxiv.org/pdf/2010.14243

Welcome join us!