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Language Model

Probability distribution over word sequences

Language probability calculation and language
generation
Language models can be specified by neural networks

Pre-trained language models are state-of-the-art
technologies
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Markov and Language Model

Andrey Markov

In 1906, gave definition
of Markov chain

Simple case: only two
states, proved ergodic
theorem

Later, expanded to more
general cases

In 1913, applied to
Pushkin’s Eugene Onegin



n-gram Language Model

Language model is probability distribution

To determine probability of word sequence wy,w,, -+, Wy

p(WlJWZJH"WN) — Iiv=1p(Wi|W1'W2’""Wi—1)

n-gram language model

~ TIN
p(WL Wp, ", WN) ~ 11i=1 p(Wl |Wi—n+1) Wi_n+2,""") Wi—l)
n — 1 order Markov chain



Shannon and Language Model

 |n 1948, laid down
foundation of
information theory

e Studied n-gram model

* Defined entropy and
cross entropy of
language

Claude Shannon



Entropy and Cross Entropy

Entropy and cross entropy of n-gram model

H,(p) = Zwl,wz,---wn —p (W1, Wy, = wy) - log, p(Wy, Wy, -+ Wy)
Hy (0, @) = Zw,wy,-wy, —P(W1, Wo, == Wy) - 1083 (w1, wa, -+ W)
Hy(p) = Hn(p, q)

Entropy and cross entropy of language

! 1 . 1
H(p) = lim —~H,(p) = lim —=log, p(w1, wy, - wy)
n-oon n—ooo n

: 1 . 1
H(p,q)= lim —Hy(p,q) = lim ——logz q(wy, W, -~ wy)

H(p) <H(p, q)



Chomsky and Language Model

Noam Chomsky

In 1956, introduced
Chomsky hierarchy

Sentences are
generated according to
grammar

Finite state grammar
(including n-gram
model) is not suitable
for language generation



Fine State Grammar

Finite state grammar (also n-gram model) is not
suitable for language generation

(i) IfS1, then S2.
(ii) Either S3, or S4.
(iii) Either if S5, then S6, or if S7, then S8
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Neural Language Model

Yoshua Bengio

n-gram model is difficult
to learn when n is large

In 2003, proposed first
neural language model

Language model
parameterized by neural
network

Word is represented by
word embedding (real-
valued vector)



Neural Language Model

Conditional probability is determined by neural network
P(WilWi—n+1, Wi—n+2, - Wi-1) = fo(Wi—nt+1, Wi—n+2, ", Wi-1)
Word embedding v.s. one-hot vector

More compact, generalizable (similarity calculation),
robust, extensible

Neural network: learnable non-linear function



Representations in Bengio’s Model

Wi

|

Output

Intermediate Representation

Word vector

Wi_n+1 Wi_n+2



RNN Language Model

Conditional probability is determined by RNN
(Recurrent Neural Network)

p(Wi |W11 Wa, Wi—l) — f9 (Wl' Wy, Wi—l)
hi = tanh(U y hi—l + W - W; + b)
p(w;|lwy, Wy, -, w;_1) = softmax(V - h;)

No Markov assumption



Representations in RNN Language Model

w w w <eos>
Output 1 2 3

Intermediate @ | —5| —— — ... ..
Representation

Intermediate @ | —— — — . .-
Representation
WordVector r  © B B



Pre-Trained Language Model

* Pre-training: learning of neural language model
(Transformer) using large amount of data in
unsupervised learning manner

* Fine-tuning: learning of neural language model for
downstream task in supervised learning manner

* Key ingredients: big data, powerful representation,
pre-training techniques



Pretrained Language Model: GPT

Input: sequence of words

Output: sequence of representations of words
Model: Transformer decoder

H™ = transformer_decoder(H®))
Unidirectional language model (auto regressive)

Pre-training: maximum likelihood estimation of
sequence (minimum cross entropy)

—logp(w) = — XL, logpe(wlwy, -+, wi_y)



Representations in GPT

Output %1 |1%) W3 <eos>
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Pretrained Language Model: BERT

Input: sequence of words

Output: sequence of representations of words
Model: Transformer encoder

H™ = transformer_encoder(H®)
Bidirectional language model

Pre-training: mask language model, sequence-to-
sequence denoising

—logp(W|W) ~ — YN, &;log pe(w;|W)



Representations in BERT
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Soft-Masked BERT

A model for spelling error correction

Using BERT as correction network

Using Bidirectional GRU as dection network
Soft masking is performed on BERT

State-of-the-art method for Chinese spelling error
correction

Soft-Masked BERT



A Naive Approach

* Directly using BERT
* Tends to choose not to make correction
* Due to way of pre-training, i.e., masking language modeing

MR 2 KI X K

MR 2 KII X &



If Candidate is Masked

Directly using BERT

Mask incorrect word and make prediction

Can work very well in error correction

However, candidate for masking is not known in advance

MR m K I X &

FA | mask I 7T K #



Architecture of Soft-Masked BERT

e Consists of detection network and correction network
e Detection network: bi-directional GRU
e Correction network: BERT

MR m K I X ®

Correction Network

T DT

MR 2 KI X &

Pr P2 P3 Ps DPs DPe DP7

Detection Network

MR 2 KII X &



Correction Network

e Soft masking at each position
 Embeddings with soft masking are input

MR m K I X &

Correction Network

Probabilities
of masking




Experimental Results

Detection Correction
Test Set Method Acc. | Prec. | Rec. | F1. | Acc. | Prec. | Rec. | F1.
NTOU (2015) 422 | 422 | 41.8 | 42.0 | 39.0 | 38.1 | 35.2 | 36.6
NCTU-NTUT (2015) | 60.1 | 71.7 | 33.6 | 45.7 | 56.4 | 66.3 | 26.1 | 37.5
HanSpeller++ (2015) | 70.1 | 80.3 | 53.3 | 64.0 | 69.2 | 79.7 | 51.5 | 62.5
Hybird (2018b) - 56.6 | 694 | 62.3 - - - 57.1
SIGHAN FASPell (2019) 742 | 67.6 | 60.0 | 63.5 | 73.7 | 66.6 | 59.1 | 62.6
Confusionset (2019) - 66.8 | 73.1 | 69.8 - 71.5 | 59.5 | 64.9
BERT-Pretrain 6.8 3.6 70 | 47 | 52 2.0 3.8 | 2.6
BERT-Finetune 80.0 | 73.0 | 70.8 | 719 | 76.6 | 65.9 | 64.0 | 64.9
Soft-Masked BERT | 80.9 | 73.7 | 73.2 | 73.5 | 774 | 66.7 | 66.2 | 66.4
BERT-Pretrain 7.1 1.3 3.6 1.9 | 0.6 0.6 1.6 | 0.8
News Title BERT-Finetune 80.0 | 650 | 615 | 63.2 | 76.8 | 553 | 52.3 | 53.8
Soft-Masked BERT | 80.8 | 655 | 64.0 | 64.8 | 77.6 | 55.8 | 54.5 | 55.2




AMBERT (A Multi-Grained BERT)

A new technique for pre-trained language
modeling

Using both multi-grained tokens, e.g.,
characters and words in Chinese

Taking BERT as example

State of the art performances on Chinese and
English language understanding tasks

1

ANMBER |



Fine-Grained vs Coarse-Grained
Language Processing

Fine-grained tokens are less complete as
lexical units but their representations are
easier to train

Coarse-grained tokens are more complete as
lexical units but their representations are
harder to train

Tokenization can be incorrect

Sometimes it is better to retain both fine-
grained and coarse-grained tokens



Architecture of AMBERT

 Two BERT models for multi-grained inputs
 Two models work in parallel and share parameters
* Perform best among existing pre-trained models

MR m K I X & MR m KI X



An Alternative Architecture

 Two BERT models for multi-grained inputs
* Two models work in parallel, but do not share parameters
 Does not work better than AMBERT

MR m K I X & MR m KI K



Another Alternative Architecture

 One BERT model for multi-grained inputs
 Model share parameters
* Does not work bette than AMBERT

M R m K I K H sp BEE m KI XIF



Experimental Results

Chinese CLUE Data Sets

Model Params | Avg. | TNEWS' IFLYTEK WSC.! AFQMC CSL' CMNLI CMRC. ChID (3
Google BERT  108M | 72.59 | 66.99 60.29 71.03 7370  83.50 79.69  71.60 82.04 64.50
XLNet-mid 200M | 73.00 | 66.28 57.85 7828 7050 8470 8125 6695 8347 67.68
ALBERT-xlarge 60M | 73.05 | 66.00 59.50 6931 6996 8440 81.13 7630 80.57 70.32
ERNIE 108M | 74.20 | 68.15 58.96 80.00 73.83 8550 80.29 7470 8228 64.10
RoBERTa 108M | 7438 | 67.63 60.31 7690  74.04 8470 80.51 7520 83.62 66.50
AMBERT 176M | 75.28 | 68.58 59.73 7828 7387 8570 81.87 7325 86.62 69.63
English GLUE Data Sets
Model Params | Avg. | COLA SST-2 MRPC STS-B QQP MNLI QNLI RTE SQuAD RACE
Google BERT 110M | 78.7 | 52.1* 93.5* 84.8* 85.8~ 89.2* 84.6* 90.5* 66.4* 755  64.3%
XLNet 110M | 786 | 479 943 833 84.1 892 868 91.7 619  79.9*  66.7*
SpanBERT  110M | 79.1 | 512 935  87.0 829 892 851 927 697 81.8 57.4
ELECTRA  110M | 81.3 | 59.7* 93.4* 86.7* 87.7* 89.1* 85.8* 92.7* 73.1* 748 69.9
ALBERT 12M | 80.1 | 532 932 875 872 878 850 912 71.1 78.7 65.8
RoBERTa 135M | 827 | 61.5 958  88.7 889 894 874 931 740 786 69.9
AMBERT* 194M | 828 | 60.0 952 889 882 895 872 926 726 82.5 71.2
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Power and Limitation of
Pre-trained Language Model

* |s close to or on par with humans in many
language processing tasks

* Mimic human language behaviors with pre-
trained language models

* Not the same as human language processing



Mimic Human Language Generation

Wl' WZ' ...’WN

Wl' WZ' ...’WN




Brain-Inspired Language Model:
Grammar

Human language processing
Broca’s area: responsible for syntax
Wernick’s area: responsible for lexicon

Hypothesis: language processing is parallel
processing

Question: can grammar be incorporated into
language model?



Areas in Cerebral Cortex




Brain-Inspired Language Model:
Multimodality

Human language processing

Language understanding: related to visual,
auditory, motion processing

Multimodal processing

Question: can multimodal language model be
built with multimodal data?



Language Model and Knowlege

* Language model implicitly contains certain
knowledge (linguistic, world knowledge, etc)

e Store simple knowledge as patterns
* Does not store complex knowledge
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Take-away Messages

Language model has history of over one-hundred years

From n-gram language model to neural language model
and pre-trained language model

Present: pre-trained language model approach is
powerful, although having limitation

We proposed Soft Masked BERT and AMBERT
Future: grammar-incorporated and multimodal models
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