CCKS 2020

Pushing the Frontier of Research on Language Models

Hang Li Bytedance Technology

Language Model

- Probability distribution over word sequences
- Language probability calculation and language generation
- Language models can be specified by neural networks
- Pre-trained language models are state-of-the-art technologies

Talk Outline

- Past
 - n-gram Language Model
- Present
 - Neural Language Model
 - Pretrained Language Model
- Our Work
 - Soft Masked BERT
 - AMBERT
- Future
 - Brain-Inspired Language Model

Markov and Language Model

Andrey Markov

- In 1906, gave definition of Markov chain
- Simple case: only two states, proved ergodic theorem
- Later, expanded to more general cases
- In 1913, applied to Pushkin's Eugene Onegin

n-gram Language Model

- Language model is probability distribution
- To determine probability of word sequence w_1, w_2, \dots, w_N
- $p(w_1, w_2, \cdots, w_N) = \prod_{i=1}^N p(w_i | w_1, w_2, \cdots, w_{i-1})$
- *n*-gram language model
- $p(w_1, w_2, \cdots, w_N) \approx \prod_{i=1}^N p(w_i | w_{i-n+1}, w_{i-n+2}, \cdots, w_{i-1})$
- n-1 order Markov chain

Shannon and Language Model

- In 1948, laid down foundation of information theory
- Studied *n*-gram model
- Defined entropy and cross entropy of language

Claude Shannon

Entropy and Cross Entropy

- Entropy and cross entropy of *n*-gram model
- $H_n(p) = \sum_{w_1, w_2, \dots, w_n} -p(w_1, w_2, \dots, w_n) \cdot \log_2 p(w_1, w_2, \dots, w_n)$
- $H_n(p,q) = \sum_{w_1,w_2,\cdots,w_n} -p(w_1,w_2,\cdots,w_n) \cdot \log_2 q(w_1,w_2,\cdots,w_n)$
- $H_n(p) \le H_n(p,q)$
- Entropy and cross entropy of language
- $H(p) = \lim_{n \to \infty} \frac{1}{n} H_n(p) = \lim_{n \to \infty} -\frac{1}{n} \log_2 p(w_1, w_2, \dots , w_n)$
- $H(p,q) = \lim_{n \to \infty} \frac{1}{n} H_n(p,q) = \lim_{n \to \infty} -\frac{1}{n} \log_2 q(w_1, w_2, \dots , w_n)$
- $H(p) \leq H(p,q)$

Chomsky and Language Model

Noam Chomsky

- In 1956, introduced Chomsky hierarchy
- Sentences are generated according to grammar
- Finite state grammar (including *n*-gram model) is not suitable for language generation

Fine State Grammar

- Finite state grammar (also *n*-gram model) is not suitable for language generation
- (i) If S1, then S2.
- (ii) Either S3, or S4.
- (iii) Either if S5, then S6, or if S7, then S8

Talk Outline

- Past
 - *n*-gram Language Model
- Present
 - Neural Language Model
 - Pretrained Language Model
- Our Work
 - Soft Masked BERT
 - AMBERT
- Future
 - Brain-Inspired Language Model

Neural Language Model

Yoshua Bengio

- *n*-gram model is difficult to learn when *n* is large
- In 2003, proposed first neural language model
- Language model parameterized by neural network
- Word is represented by word embedding (realvalued vector)

Neural Language Model

- Conditional probability is determined by neural network
- $p(w_i|w_{i-n+1}, w_{i-n+2}, \cdots, w_{i-1}) = f_{\theta}(w_{i-n+1}, w_{i-n+2}, \cdots, w_{i-1})$
- Word embedding v.s. one-hot vector
- More compact, generalizable (similarity calculation), robust, extensible
- Neural network: learnable non-linear function

Representations in Bengio's Model

RNN Language Model

- Conditional probability is determined by RNN (Recurrent Neural Network)
- $p(w_i|w_1, w_2, \cdots, w_{i-1}) = f_{\theta}(w_1, w_2, \cdots, w_{i-1})$
- $\boldsymbol{h}_i = \tanh(\boldsymbol{U} \cdot \boldsymbol{h}_{i-1} + \boldsymbol{W} \cdot \boldsymbol{w}_i + \boldsymbol{b})$
- $p(w_i|w_1, w_2, \cdots, w_{i-1}) = \operatorname{softmax}(V \cdot h_i)$
- No Markov assumption

Representations in RNN Language Model

Pre-Trained Language Model

- Pre-training: learning of neural language model (Transformer) using large amount of data in unsupervised learning manner
- Fine-tuning: learning of neural language model for downstream task in supervised learning manner
- Key ingredients: big data, powerful representation, pre-training techniques

Pretrained Language Model: GPT

- Input: sequence of words
- Output: sequence of representations of words
- Model: Transformer decoder
- $H^{(L)} = \text{transformer_decoder}(H^{(0)})$
- Unidirectional language model (auto regressive)
- Pre-training: maximum likelihood estimation of sequence (minimum cross entropy)
- $-\log p(\mathbf{w}) = -\sum_{i=1}^{N} \log p_{\theta}(w_i | w_1, \cdots, w_{i-1})$

Representations in GPT

Pretrained Language Model: BERT

- Input: sequence of words
- Output: sequence of representations of words
- Model: Transformer encoder
- $H^{(L)} = \text{transformer_encoder}(H^{(0)})$
- Bidirectional language model
- Pre-training: mask language model, sequence-tosequence denoising
- $-\log p(\overline{\boldsymbol{w}}|\widetilde{\boldsymbol{w}}) \approx -\sum_{i=1}^{N} \delta_i \log p_{\boldsymbol{\theta}}(w_i|\widetilde{\boldsymbol{w}})$

Representations in BERT

Talk Outline

- Past
 - *n*-gram Language Model
- Present
 - Neural Language Model
 - Pretrained Language Model
- Our Work
 - Soft Masked BERT
 - AMBERT
- Future
 - Brain-Inspired Language Model

Soft-Masked BERT

- A model for spelling error correction
- Using BERT as correction network
- Using Bidirectional GRU as dection network
- Soft masking is performed on BERT
- State-of-the-art method for Chinese spelling error correction

A Naïve Approach

- Directly using BERT
- Tends to choose not to make correction
- Due to way of pre-training, i.e., masking language modeing

If Candidate is Masked

- Directly using BERT
- Mask incorrect word and make prediction
- Can work very well in error correction
- However, candidate for masking is not known in advance

Architecture of Soft-Masked BERT

- Consists of detection network and correction network
- Detection network: bi-directional GRU
- Correction network: BERT

Correction Network

- Soft masking at each position
- Embeddings with soft masking are input

Experimental Results

Test Set	Mathad		Deteo	ction		Correction			
Iest Set	wiethou	Acc.	Prec.	Rec.	F1.	Acc.	Prec.	Rec.	F1.
SIGHAN	NTOU (2015)	42.2	42.2	41.8	42.0	39.0	38.1	35.2	36.6
	NCTU-NTUT (2015)	60.1	71.7	33.6	45.7	56.4	66.3	26.1	37.5
	HanSpeller++ (2015)	70.1	80.3	53.3	64.0	69.2	79.7	51.5	62.5
	Hybird (2018b)	-	56.6	69.4	62.3	-	-	-	57.1
	FASPell (2019)	74.2	67.6	60.0	63.5	73.7	66.6	59.1	62.6
	Confusionset (2019)	-	66.8	73.1	69.8	-	71.5	59.5	64.9
	BERT-Pretrain	6.8	3.6	7.0	4.7	5.2	2.0	3.8	2.6
	BERT-Finetune	80.0	73.0	70.8	71.9	76.6	65.9	64.0	64.9
	Soft-Masked BERT	80.9	73.7	73.2	73.5	77.4	66.7	66.2	66.4
News Title	BERT-Pretrain	7.1	1.3	3.6	1.9	0.6	0.6	1.6	0.8
	BERT-Finetune	80.0	65.0	61.5	63.2	76.8	55.3	52.3	53.8
	Soft-Masked BERT	80.8	65.5	64.0	64.8	77.6	55.8	54.5	55.2

AMBERT (A Multi-Grained BERT)

- A new technique for pre-trained language modeling
- Using both multi-grained tokens, e.g., characters and words in Chinese
- Taking BERT as example
- State of the art performances on Chinese and English language understanding tasks

Fine-Grained vs Coarse-Grained Language Processing

- Fine-grained tokens are less complete as lexical units but their representations are easier to train
- Coarse-grained tokens are more complete as lexical units but their representations are harder to train
- Tokenization can be incorrect
- Sometimes it is better to retain both finegrained and coarse-grained tokens

Architecture of AMBERT

- Two BERT models for multi-grained inputs
- Two models work in parallel and share parameters
- Perform best among existing pre-trained models

An Alternative Architecture

- Two BERT models for multi-grained inputs
- Two models work in parallel, but do not share parameters
- Does not work better than AMBERT

Another Alternative Architecture

- One BERT model for multi-grained inputs
- Model share parameters
- Does not work bette than AMBERT

Experimental Results

Chinese CLUE Data Sets

Model	Params	Avg.	TNEWS [†]	IFLYTEK	WSC. [†]	AFQMC	CSL^\dagger	CMNLI	CMRC.	ChID	C^3
Google BERT	108M	72.59	66.99	60.29	71.03	73.70	83.50	79.69	71.60	82.04	64.50
XLNet-mid	200M	73.00	66.28	57.85	78.28	70.50	84.70	81.25	66.95	83.47	67.68
ALBERT-xlarge	60M	73.05	66.00	59.50	69.31	69.96	84.40	81.13	76.30	80.57	70.32
ERNIE	108M	74.20	68.15	58.96	80.00	73.83	85.50	80.29	74.70	82.28	64.10
RoBERTa	108M	74.38	67.63	60.31	76.90	74.04	84.70	80.51	75.20	83.62	66.50
AMBERT	176M	75.28	68.58	59.73	78.28	73.87	85.70	81.87	73.25	86.62	69.63

English GLUE Data Sets

Model	Params	Avg.	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	SQuAD	RACE
Google BERT	110M	78.7	52.1*	93.5^{\star}	84.8^{\star}	85.8^{\star}	89.2^{\star}	84.6^{\star}	90.5^{\star}	66.4^{\star}	75.5	64.3^{\star}
XLNet	110M	78.6	47.9	94.3	83.3	84.1	89.2	86.8	91.7	61.9	79.9^{*}	66.7^{\star}
SpanBERT	110M	79.1	51.2	93.5	87.0	82.9	89.2	85.1	92.7	69.7	81.8	57.4
ELECTRA	110M	81.3	59.7*	93.4^{\star}	86.7^{\star}	87.7^{*}	89.1^{\star}	85.8^{\star}	92.7^{\star}	73.1^{*}	74.8	69.9
ALBERT	12M	80.1	53.2	93.2	87.5	87.2	87.8	85.0	91.2	71.1	78.7	65.8
RoBERTa	135M	82.7	61.5	95.8	88.7	88.9	89.4	87.4	93.1	74.0	78.6	69.9
AMBERT [‡]	194M	82.8	60.0	95.2	88.9	88.2	89.5	87.2	92.6	72.6	82.5	71.2

Talk Outline

- Past
 - *n*-gram Language Model
- Present
 - Neural Language Model
 - Pretrained Language Model
- Our Work
 - Soft Masked BERT
 - AMBERT
- Future

- Brain-Inspired Language Model

Power and Limitation of Pre-trained Language Model

- Is close to or on par with humans in many language processing tasks
- Mimic human language behaviors with pretrained language models
- Not the same as human language processing

Mimic Human Language Generation

Brain-Inspired Language Model: Grammar

- Human language processing
- Broca's area: responsible for syntax
- Wernick's area: responsible for lexicon
- Hypothesis: language processing is parallel processing
- Question: can grammar be incorporated into language model?

Areas in Cerebral Cortex

Brain-Inspired Language Model: Multimodality

- Human language processing
- Language understanding: related to visual, auditory, motion processing
- Multimodal processing
- Question: can multimodal language model be built with multimodal data?

Language Model and Knowlege

- Language model implicitly contains certain knowledge (linguistic, world knowledge, etc)
- Store simple knowledge as patterns
- Does not store complex knowledge

Talk Outline

- Past
 - *n*-gram Language Model
- Present
 - Neural Language Model
 - Pretrained Language Model
- Our Work
 - Soft Masked BERT
 - AMBERT
- Future
 - Brain-Inspired Language Model

Take-away Messages

- Language model has history of over one-hundred years
- From *n*-gram language model to neural language model and pre-trained language model
- Present: pre-trained language model approach is powerful, although having limitation
- We proposed Soft Masked BERT and AMBERT
- Future: grammar-incorporated and multimodal models

References

- Zhang, X. and Li, H., 2020. AMBERT: A Pre-trained Language Model with Multi-Grained Tokenization. arXiv preprint arXiv:2008.11869.
- Zhang, S., Huang, H., Liu, J. and Li, H., 2020. Spelling Error Correction with Soft-Masked BERT. arXiv preprint arXiv:2005.07421.
- 李航,语言模型:过去、现在、未来,计算机学会通讯, 2020

Thank you!

lihang.lh@bytedance.com