

CCKS 2020 • 知识图谱前沿趋势

知识图谱数据管理研究新进展

天津大学 智能与计算学部 人工智能学院

王 鑫

wangx@tju.edu.cn

2020年11月14日 • 南昌

0 知识图谱

■ 知识图谱数据管理系统的构成

• 王鑫, 邹磊, 王朝坤, 等. 知识图谱数据管理研究综述. 软件学报. 2019.

知识图谱存储管理

Synergistic with other analytics IBM Db2 Graph **Retrofittable** to existing data

In-DBMS graph query approach

Graph overlay approach to expose a graph view of the relational data

Patient Table			
patientID	name	address	subscriptionID
1	Alice		115
••• •			

Disease Table

diseaseID	conceptCode	conceptName
64572326	44054006	"Type 2 diabetes"

HasDisease Table			
patientID	diseaseID	description	
1	64572326		

DiseaseOntology Table

sourceID	targetID	type
64572326	73211009	"isa"
(

V_	tables": [
	"table_name": "Patient",
	"prefixed_id": true,
	"id": "'patient'::patientID",
	"fix_label": true,
	"label": "'patient'".
	"properties": ["patientID", "name", "address", "
	subscriptionID"]

Tian, et al. IBM Db2 Graph: Supporting Synergistic and Retrofittable Graph Queries Inside IBM Db2. SIGMOD 2020.

1 知识图谱存储管理

Microsoft A1

Availability of cheap DRAM High speed RDMA (Remote Direct Memory

Distributed In-Memory cessiph Database used by the Bing search engine

- Store tens of billions of vertices and edgesuery latency in single digit
- Throughput of 350+ million of vertex readainst excepted

• Buragohain, et al. A1: A Distributed In-Memory Graph Database. SIGMOD 2020.

1 知识图谱存储管理

- LiveGraph Graph transactional Real-time graph
 A Transactional Grasystem with Purely Sequeational Adjacency List Scans
- Transactional Edge Log

• Purely sequential, yet mutable, edge storage

Cost	See	ek	Scan (per edge)
B+ Tree	$O(\log N)$	random	sequential w. random
LSMT	$O(\log N)$	random	sequential w. random
Linked List	O(1)	random	random
\mathbf{CSR}	O(1)	random	sequential
TEL	O(1)	random	sequential

• Zhu, et al. LiveGraph: A Transactional Graph Storage System with Purely Sequential Adjacency List Scans. VLDB 2020.

2 知识图谱查询处理: GPU加速

GSI: GPU-friendly Subgraph Isomorphism

- Existing GPU-based solutions adopt two-step output scheme performing the same join twice in order to write intermediate results concurrently
- Subgraph isomorphism NP-

row

Prealloc-Combine strategy, vertex-oriented

Zeng, et al. GSI: GPU-friendly Subgraph Isomorphism. ICDE 2020.

2 知识图谱查询处理: GPU加速

GPU-Accelerated Subgraph Enumeration on Partitioned Graphs

- Existing methods can only handle graphs that fit into the GPU memory
- This approach can scale to large graphs beyond the GPU memory
- Divides the graph into partitions

 $G_1 G_2 G_3$

Main Memory

Guo, et al. GPU-Accelerated Subgraph Enumeration on Partitioned Graphs. SIGMOD 2020.

Approximate Pattern Matching

real-world (257 billion edges) synthetic (1.1 trillion edges) in Massive Graphs with Precision and Recall Guarantees massive cluster (256 nodes/9,216 cores)

- Combines edit-distance based matching with systematic graph pruning
- Identifying all exact matches for up to k edit-distance subgraphs

Figure 1: Edit-distance based approximate matching: (left) a search template \mathcal{H}_0 and background graph G, and (right) example matches at k = 1 and k = 2 edit-distance. (Center) the maximum candidate set for the search template - the (approximate) match superset.

(b) Work reuse, eliminating redundant constraints checks.

Reza, et al. Approximate Pattern Matching in Massive Graphs with Precision and Recall Guarantees. SIGMOD 2020. 9

Top-k Similarity Search Semantic Guided and Response Times Bounde

- Structural gap between G_{Q} and the predefined schema in G causes
- Users cannot view the answers until the graph query terminates
- Leverage a knowledge graph embedding model to build the semantic

Wang, et al. Semantic Guided and Response Times Bounded Top-k Similarity Search over Knowledge Graphs. SIGMOD 2020.

- **Online Indices** for Predictive Top-k Entity and Aggregate Queries on Knowledge Graphs
 - Top-k entity queries and aggregate queries
 - An incremental index on top of low dimensional entity vectors transformed from network embedding vectors
 - Provide theoretical guarantees of accuracy

- Spatial indexing of the embedding vectors
- $\begin{array}{ll} \mbox{(Q1) What are the top-5 most likely} \\ \mbox{restaurants Amy would rate high but has} \\ \mbox{not been to yet?} \\ \mbox{(Q2) What is the average age of all the} \\ \mbox{people who would like Restaurant 2?} \\ \end{array} \\ \begin{array}{ll} \mbox{t} r \end{array}$
- Use a Johnson-Lindenstrauss (JL) type random
- PerferitionA* search with top-k best choices in the

• Li, et al. Online Index for Predictive Top-k Entity and Aggregate Queries on Knowledge Graphs. ICDE 2020.

Online Schemaless Querying of Heterogeneous Open Knowledge Bases

- Open KB derived automatically from unstructured text without any prespecifie chanteleg for individual query components
 - Identifies an answer by reasoning over the collective
 - An alignment-based algorithm for extracting answers based on textual and semantic similarity

Online and does not rely on any offline process to learn transformation

• Bhutani, et al. Online Schemaless Querying of Heterogeneous Open Knowledge Bases. CIKM 2019.

2 知识图谱查询处理: 查询重写

SPARQL Rewriting Towards Desired Results

- A Gap between the user's real desire and the actual meaning of a SPARQL
 Overy-restricting: Generate a new query Q' by applying a set of modifiers
- (1) Q' is similar to Q(2) Q' returns a result containing as fewer entity tuples in E^- as
- Query-relaxing: Qessible a similar query Q' whose resul overlaps with E+ as much as poss

SELECT ?person ?award	?person
WHERE {	Michael Jorda
?person given_name "Michael".	3
?person family_name "Jordan".	Michael Jorda
?person award_received ?award.	Michael I. Jor
}	

:person	awaru
Michael Jordan	All-NBA Team
Michael Jordan	NBA MPV Award
Michael I. Jordan	ACM Fellow
	:
Michael I. Jordan	Rumelhart Prize

Doward

Query:

- SELECT ?company ?person WHERE {
- ?company locationCity California. ?company industry Software.

?company founders

Result:	
?company	?person
Google Inc.	Larry Page
Google Inc.	Sergey Brin

NP-Hard no polynomial-time approximation scheme propose a (1-1/e)-approximation method for query-restricting 2 heuristics for query-relaxing

Query Modifiers

- AddE(*t*): adding an edge triplet *t* in *T*_{*Q*};
- ModE(*t*, *t'*): replacing an edge triplet *t* with *t'*;
- DelE(*t*): deleting an edge triplet *t* from *T*_{*Q*};
- AddF(f): adding a filter f in F_Q ;
- ModF(*f*, *f*'): replacing a filter *f* with a*f*';
- DelF(f): deleting a filter f from F_Q .

• Jian, et al. SPARQL Rewriting: Towards Desired Results. SIGMOD 2020.

(a)

?person.

2 知识图谱查询处理: 聚合操作

Aggregation Support for Modern Graph Analytics in TigerGraph

- GSQL: the specification of aggregation in graph analytics
- PageRank Query: Cross-Iteration Composition via Accumulators

```
CREATE QUERY PageRank (float maxChange, int maxIteration, float dampingFactor) {
  MaxAccum<float> @@maxDifference; // max score change in an iteration
  SumAccum<float> @received_score; // sum of scores received from neighbors
  SumAccum<float> @score = 1;
                                         // initial score for every vertex is 1.
  AllV = {Page.*};
                                          // start with all vertices of type Page
  WHILE @@maxDifference > maxChange LIMIT maxIteration DO
     @@maxDifference = 0:
     S = SELECT
         FROM
                     AllV:v -(LinkTo>)- Page:n
         ACCUM
                     n.@received_score += v.@score/v.outdegree()
         POST-ACCUM
                     v.@score = 1-dampingFactor + dampingFactor * v.@received_score,
                     v.@received_score = 0,
                     @@maxDifference += abs(v.@score - v.@score');
  END ;
```

• Deutsch, et al. Aggregation Support for Modern Graph Analytics in TigerGraph. SIGMOD 2020.

分析挖掘

- IDAR: Fast Supergraph Search Using DAG Integration [VLDB 2020] 超图搜索
- Distributed Subgraph Counting: A General Approach [VLDB2020] 通用框架
- G-thinker: A Distributed Framework for Mining Subgraphs in a Big Graph [ICDE 2020]
- Mining an "Anti-Knowledge Base" from Wikipedia Updates with Applications to Fact Checking and Beyond [VLDB2020] 挖掘反三元组
- MultiImport: Inferring Node Importance in a Knowledge Graph from Multiple Input signals [KDD 2020] 节点重要性 latent variable model, attentive GNN
- Neural Subgraph Isomorphism Counting [KDD2020] 基于神经网络 实验评测
- In-Memory Subgraph Matching: An In-depth Study [SIGMOD 2020]
- Realistic Re-evaluation of Knowledge Graph Completion Methods: An Experimental Study [SIGMOD 2020]
- A Benchmarking Study of Embedding-based Entity Alignment for Knowledge Graphs [VLDB 2020]

