

PRKU: An Academic Paper Recommendation Model^{**} Based on Knowledge Graph

Jinxi Fan, Jinwen Zhu, Daling Wang, Shi Feng, Yifei Zhang

School of Computer Science and Engineering, Northeastern University

Speaker: Jinxi Fan

Introduction

Proposed Model

Dataset Construction

1

3

Experiments

Conclusion 6

4

01 Introduction

Traditional model

Deep learning based model

collaborative filtering

DeepFM, NCF

Academic paper recommendation

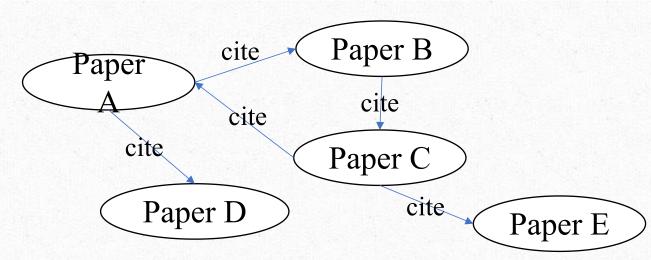
citation-based model

content-based model

These models ignore :

- other structural information (i.e., venue and author) besides citation relations
- the influence of paper click order on user preference

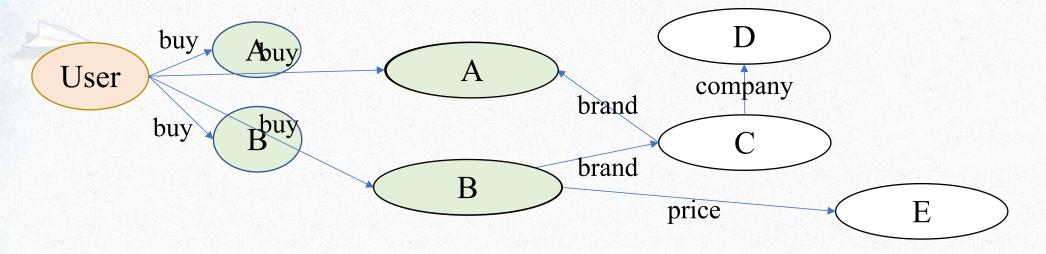
To tackle these challenges, in this paper we propose a Personalized Recommendation model based on Knowledge graph and User interaction sequence (dubbed as PRKU) for academic paper recommendation.



02 Related Work

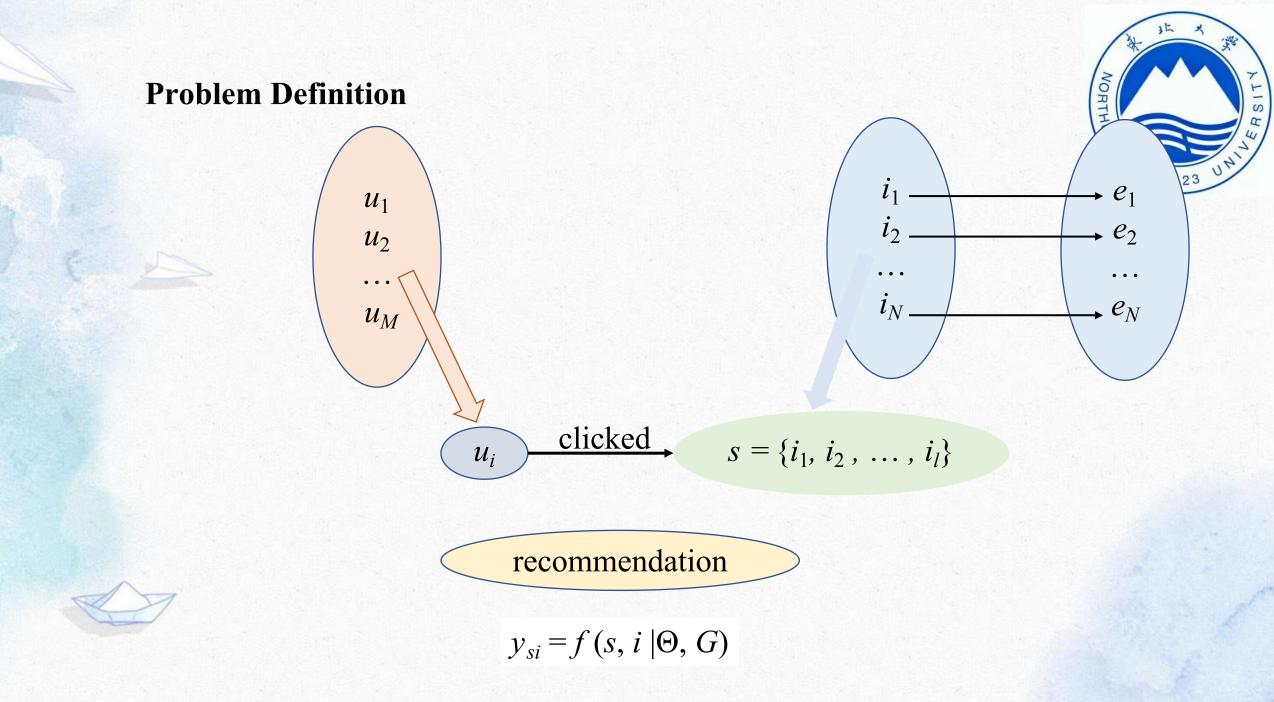
Academic Paper Recommendation

The first type of paper recommendation is based on the citation relations.

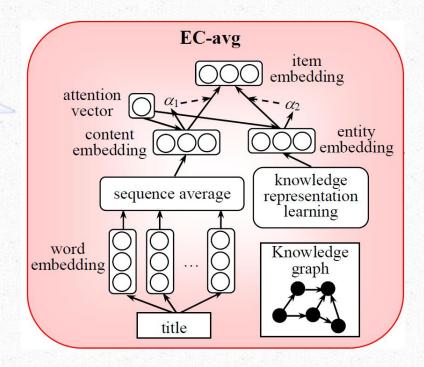

The second type of paper recommendation is based on the paper content.

KG-based Recommendation

The first type of KG-based recommendation add new relations between user-item interaction and knowledge graph.



The second type of KG-based recommendation enhances the representation of items by introducing knowledge graph.



03 Proposed Model

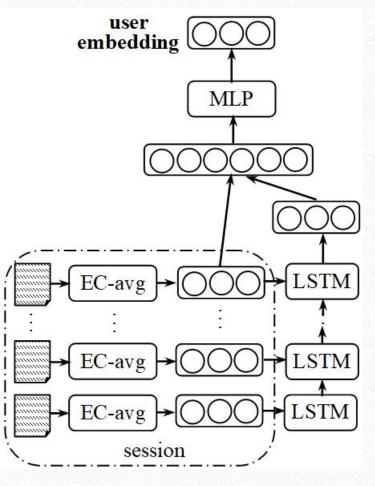
Academic Paper Embedding

Concatenation:

 $\mathbf{i} = \mathbf{x} \parallel \mathbf{k}$

Weighted Sum: $\mathbf{i} = w_1 \mathbf{x} + w_2 \mathbf{k}$

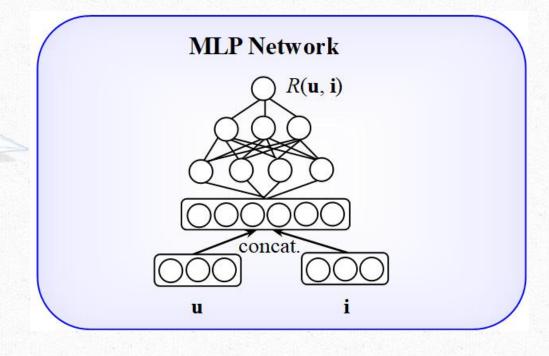
Attention:


$$a_{x} = \frac{\exp(\mathbf{x} \ \mathbf{w}_{att})}{\exp(\mathbf{k} \ \mathbf{w}_{att}) + \exp(\mathbf{x} \ \mathbf{w}_{att})}$$

$$a_{k} = \frac{\exp(\mathbf{k} \ \mathbf{w}_{att})}{\exp(\mathbf{k} \ \mathbf{w}_{att}) + \exp(\mathbf{x} \ \mathbf{w}_{att})}$$

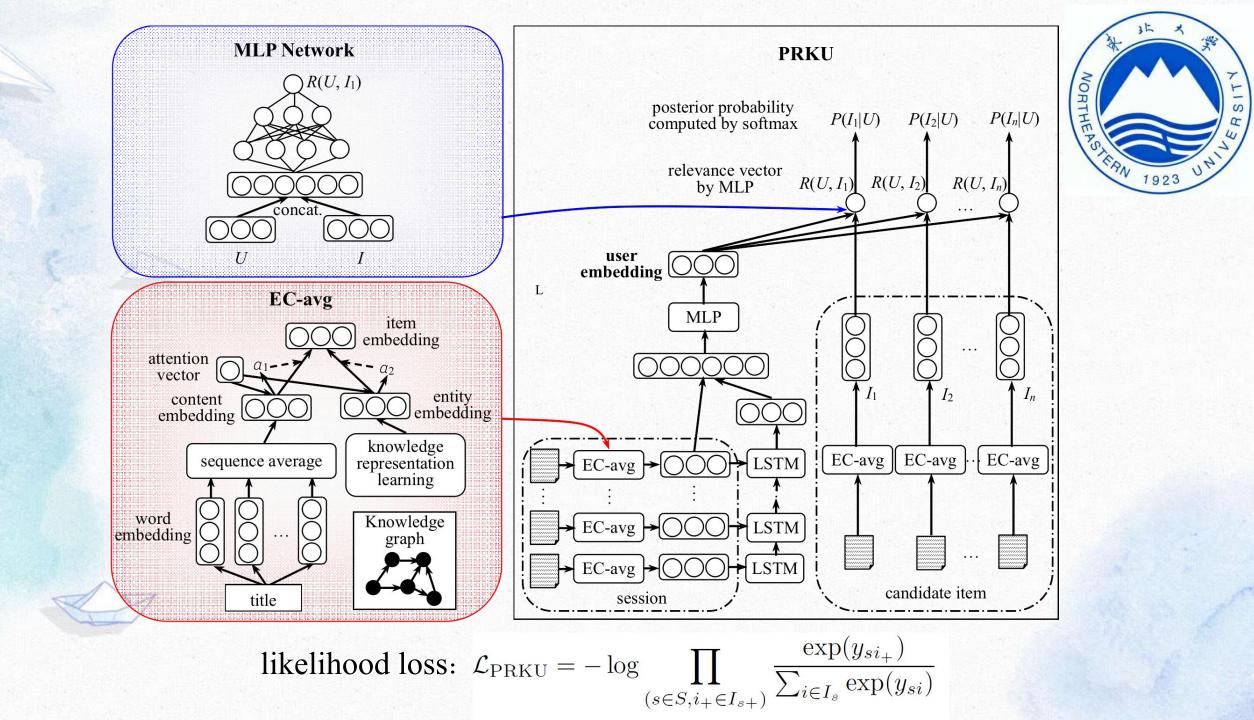
 $\mathbf{i} = a_{k}\mathbf{k} + a_{x}\mathbf{x}$

User Embedding


MORTHER SILAN 1923 UNI

 $\mathbf{u}_{l} = \mathrm{LSTM}(s)$

 $\mathbf{u}_s = \mathbf{i}_{last}$


$$\mathbf{u} = \mathrm{MLP} \left(\mathbf{u}_l \| \mathbf{u}_s \| \mathbf{u}_s - \mathbf{u}_l \| \mathbf{u}_s \odot \mathbf{u}_l \right)$$

Model Prediction

 $y_{si} = \mathrm{MLP}(\mathbf{u} \parallel \mathbf{i})$

Dataset Construction

Academic Paper Knowledge Graph

Amine	Entity r papers Name	Number	Relationship Name	Number
~	Paper	376192	REFERENCE	25738
(1)Dele	ete t kæynaper sda	ta with mon	-English with the	2524038
(2) Del	ete the paper da	ata ³⁴¹⁵⁹⁷ illo	gical titles.	375526
(3) Del	Organization ete the paper da	211744 ata before 2	WORK_IN 010.	254872
	Venue	22585	VENUE_OF	319047
(4) Ret	ain ke y ætt ribut	es in the da	taset.YEAR_OF	373364
7	Total	1889292	Total	3872582

Recommendation Dataset

OpenURL routing dataset

((1))Delete meaningless and null attributes.

((2)Integrate the attribut**Eternsi**h repeated in an **Segsiffits** one attribute. ((3)Match the processed dataset with the academic paper knowledge graph

05 Experiments

Baselines

POP : A naive session-based recommender systems that always recommends the most popular items of the training set.

Item-KNN : This model recommends items similar to the interaction for the user based on cosine-based similarity between the candidate and the interaction within the session. In addition, the paper proposes a constraint to avoid high similarity between low-frequency items.

GRU4Rec: An RNN based deep learning model for session based recommendation, which composed of GRU units, it adopt the session-parallel mini-batch training and ranking-based loss functions during the training.

Contextual-KNN (CKNN) : This model interpolates KNN method with a session-based RNN demonstrating further performance gains over static recommender systems.

ShortTerm Attention/Memory Priority (STAMP): STAMP is a novel short-term memory priority model that using an MLP network with attention to capture the user's long-term preference from previous clicks and the current interest of the last-clicks in a session.

Evaluation Criterion

 $MRR@K = \frac{1}{N} \sum_{t \in T} \frac{1}{rank(t)}$

$$\mathbf{P}@\mathbf{K} = \frac{n_{\mathrm{hit}}}{N}$$

Results

Model	P@20	MRR@20	
POP	0.1140	0.0288	
IKNN	0.5192	0.1890	
GRU4Rec	0.6284	0.2010	
CKNN	0.6784	0.2898	
STAMP	0.6982	0.2973	
PRKU _C	0.7023	0.3000	
PRKU _W	0.7047	0.3018	
PRKU _A	0.7061	0.3021	

Results

Model	P@5	MRR@5	P@10	MRR@10
STAMP	0.4892	0.2783	0.5780	0.2869
PRKU _C	0.4902	0.2791	0.5792	0.2910
PRKU _W	0.4927	0.2803	0.5788	0.2931
PRKU _A	0.4953	0.2810	0.5802	0.2954

Effect of Knowledge Graph Embedding

Model	P@20	MRR@20	
PRKU _A	0.7061	0.3021	
PRKU _A -struc_feat	0.6919	0.2901	
PRKU _A -unstruc_feat	0.6621	0.2756	

Influence of KG representation learning methods

Model	P@5	MRR@5	
PRKU _A -TransR	0.7061	0.3021	
PRKU_A-TransE	0.6974	0.2883	
PRKU _A -TransH	0.6987	0.2987	
PRKU _A -RESCAL	0.6910	0.2898	
PRKU _A -DisMult	0.6890	0.2914	
PRKU _A -HolE	0.6982	0.2973	

Influence of session length

Model	5	10	15	20
PRKU _A	<u>0.7026</u>	<u>0.7138</u>	<u>0.7201</u>	<u>0.7152</u>
PRKU _C	0.7007	0.7100	0.7183	0.7096
PRKU _W	0.7047	0.7108	0.7181	0.7100

06 Conclusion

- We propose a novel framework called Personalized Recommendation model based on Knowledge graph and User interaction sequence (PRKU) to recommend academic papers.
- In PRKU, we use LSTM to capture user's long-term preferences and introduce academic paper knowledge graph to enhance the representation of academic papers.
- We construct an academic paper knowledge graph and a paper recommendation dataset. Extensive experimental results on the dataset demonstrate the rationality and effectiveness of PRKU.

THANKS!

