

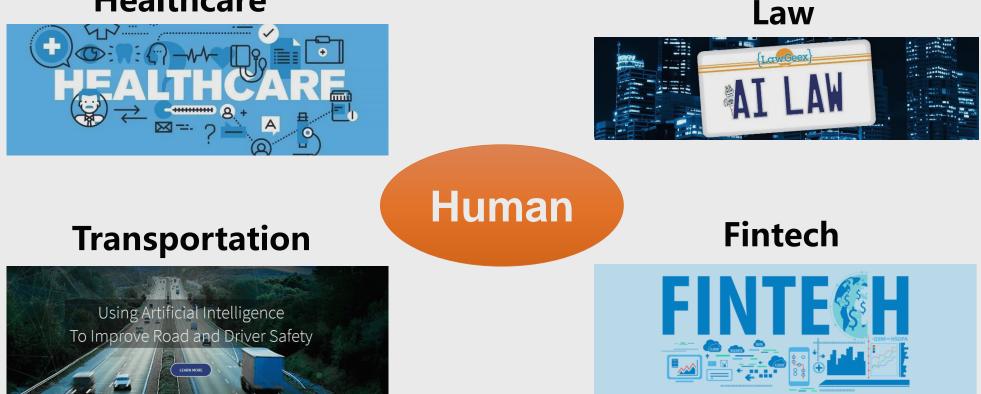
Stable Learning:

Finding the Common Ground between Causal Inference and Machine Learning

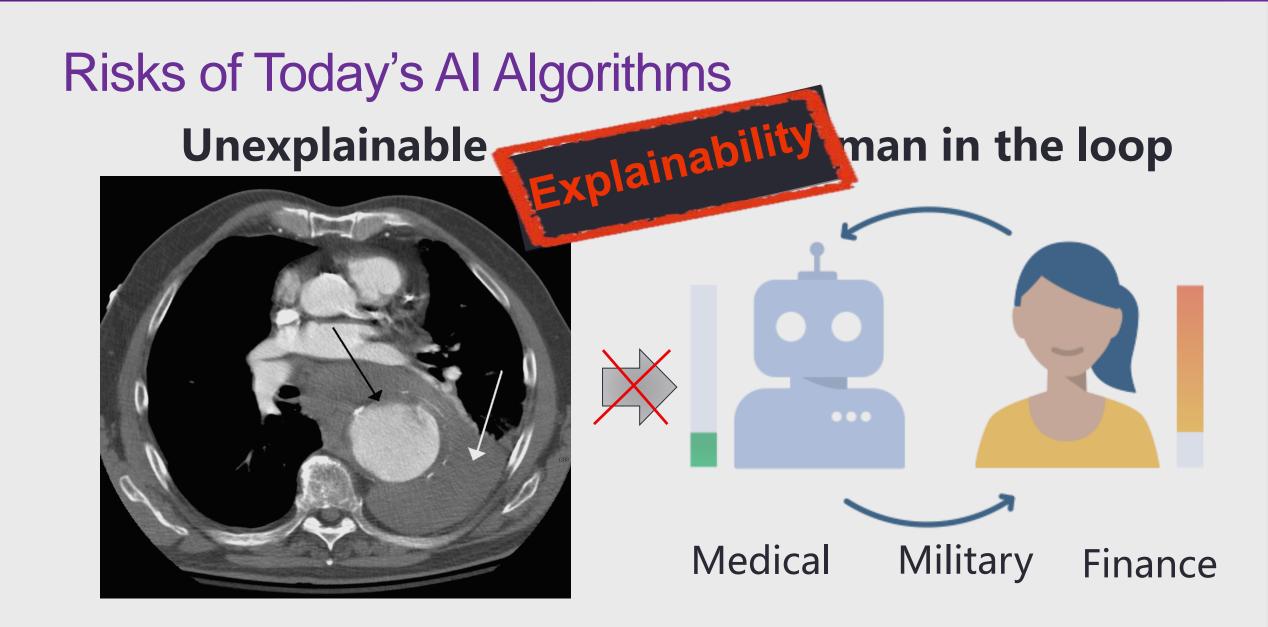
Peng Cui Tsinghua University

Now AI is stepping into risk-sensitive areas

Healthcare

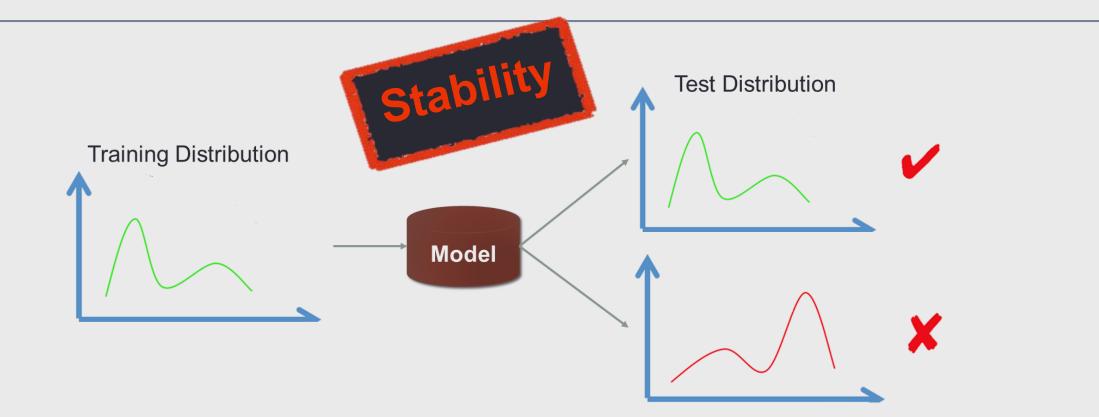


Shifting from *Performance Driven* to *Risk Sensitive*

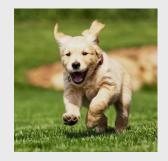


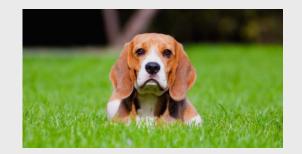
Risks of Today's AI Algorithms

Most ML methods are developed under I.I.D hypothesis



Risks of Today's Al Algorithms





Yes

5

No

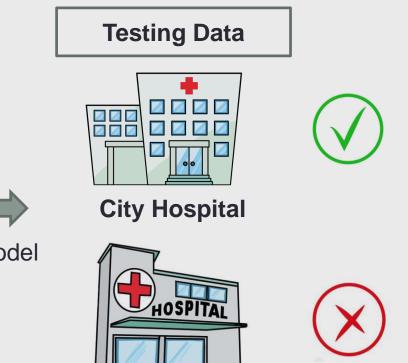
Risks of Today's Al Algorithms

Cancer survival rate prediction

- Body status
- Income
- Treatments
- Medications

Predictive Model

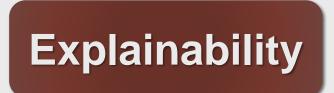
City Hospital Higher income, higher survival rate.



University Hospital

Survival rate is not so correlated with income.

The Current Condition



7

We cannot *understand* Al We don't *trust* Al

A plausible reason: Correlation

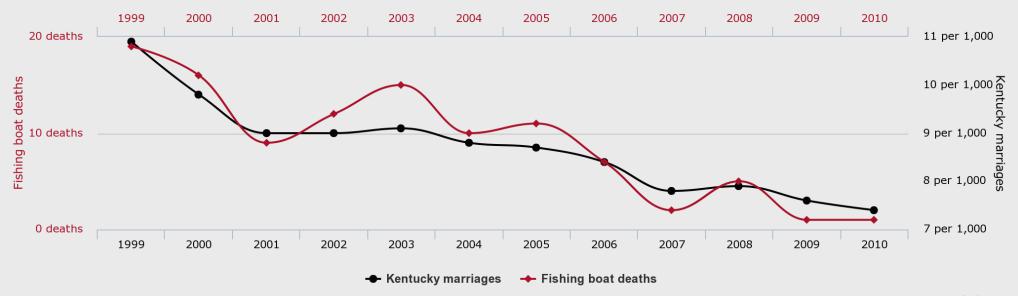
Correlation is the very basics of machine learning.

@marketoonist.com

Correlation is not explainable

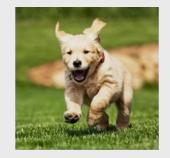
People who drowned after falling out of a fishing boat

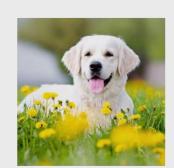
Marriage rate in Kentucky

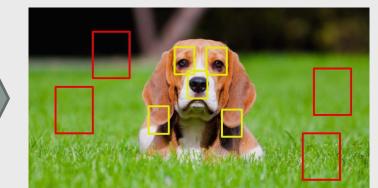


tylervigen.com

Correlation is 'unstable'







At home

on beach

eating

in water

lying

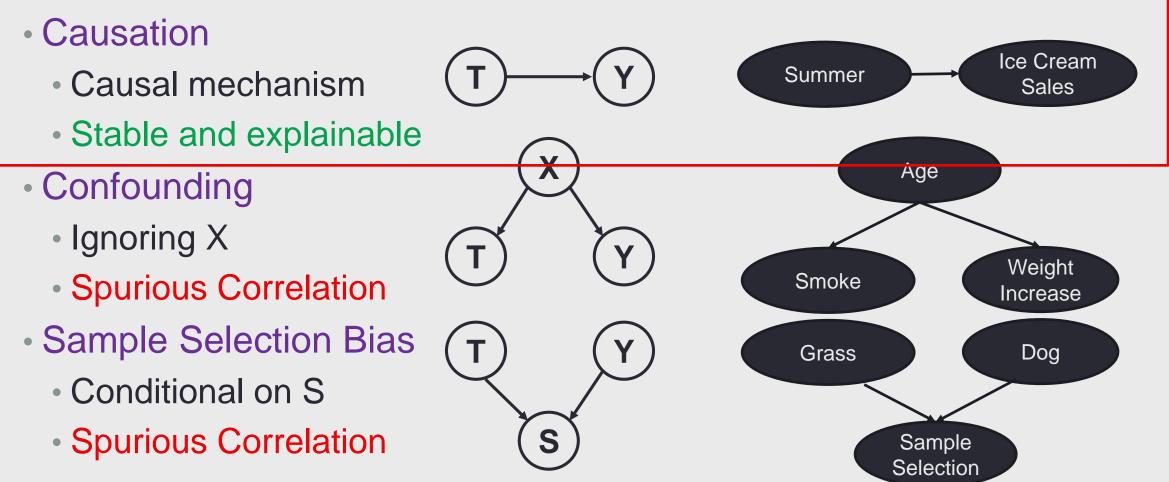
on grass

in street

running

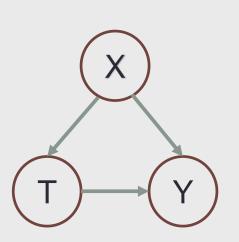
It's not the fault of *correlation*, but the way we use it

Three sources of correlation:



A Practical Definition of Causality

Definition: T causes Y if and only if changing T leads to a change in Y, while keeping everything else constant.



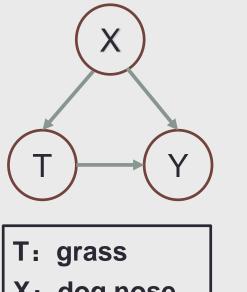
Causal effect is defined as the magnitude by which Y is changed by a unit change in T.

Called the "interventionist" interpretation of causality.

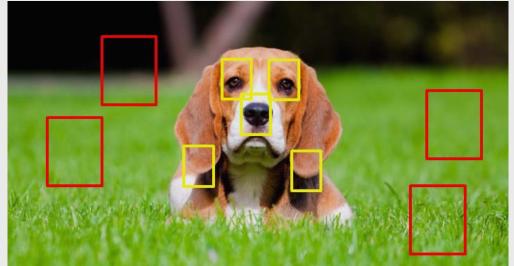
*Interventionist definition [http://plato.stanford.edu/entries/causation-mani/]

The benefits of bringing causality into learning

Causal Framework



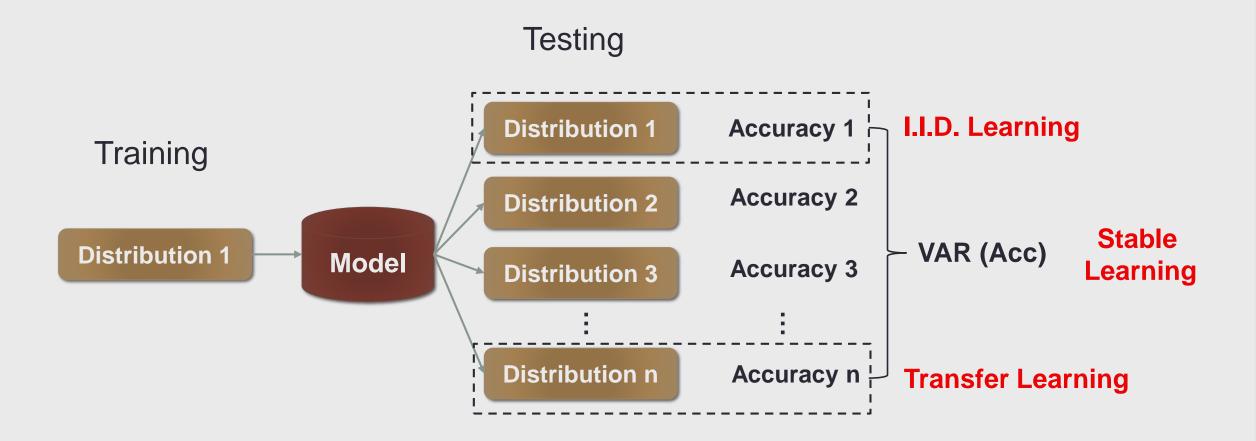
Grass—Label: Strong correlation Weak causation Dog nose—Label: Strong correlation Strong causation



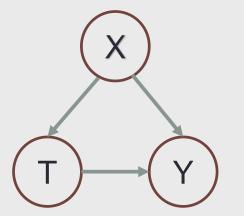
X: dog nose Y: label

More **Explainable** and More **Stable**

Stable Learning



Revisit Directly Balancing for causal inference



Typical Causal Framework

Directly Confounder Balancing

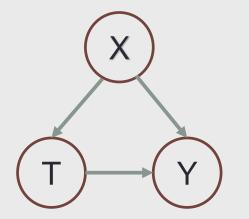
Given a feature T

Assign different weights to samples so that the samples with T and the samples without T have similar distributions in X

Calculate the difference of Y distribution in treated and controlled groups. (correlation between T and Y)

Sample reweighting can make a variable independent of other variables.

Global Balancing: making all variables independent



Typical Causal Framework

Analogy of A/B Testing

Assign different weights to samples so that the samples with T and the samples without T have similar distributions in X

Given ANY feature T

Calculate the difference of Y distribution in treated and controlled groups. (correlation between T and Y)

If all variables are independent after sample reweighting, Correlation = Causality

Theoretical Guarantee

PROPOSITION 3.3. If $0 < \hat{P}(X_i = x) < 1$ for all x, where $\hat{P}(X_i = x) = \frac{1}{n} \sum_i \mathbb{I}(X_i = x)$, there exists a solution W^* satisfies equation (4) equals 0 and variables in X are independent after balancing by W^* .

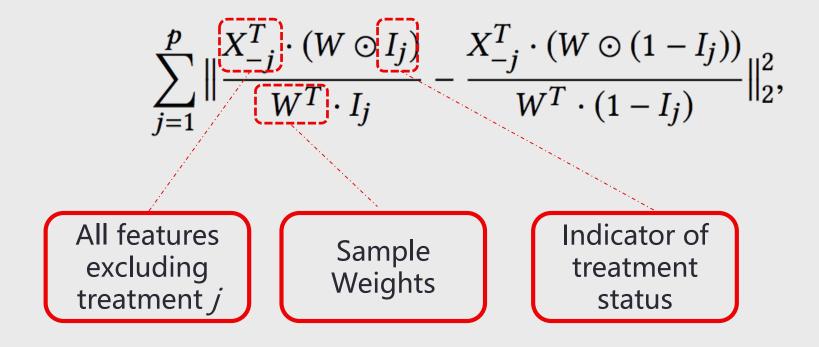
$$\sum_{j=1}^{p} \left\| \frac{\mathbf{X}_{\cdot,-j}^{T} \cdot (W \odot \mathbf{X}_{\cdot,j})}{W^{T} \cdot \mathbf{X}_{\cdot,j}} - \frac{\mathbf{X}_{\cdot,-j}^{T} \cdot (W \odot (1-\mathbf{X}_{\cdot,j}))}{W^{T} \cdot (1-\mathbf{X}_{\cdot,j})} \right\|_{2}^{2}, \quad (4)$$

PROOF. Since $\|\cdot\| \ge 0$, Eq. (8) can be simplified to $\forall j, \forall k \ne j$ $\lim_{n \to \infty} \left(\frac{\sum_{l:X_{l,k}=1,X_{l,j}=1} W_l}{\sum_{l:X_{l,j}=0} W_l} - \frac{\sum_{l:X_{l,k}=1,X_{l,j}=0} W_l}{\sum_{l:X_{l,j}=0} W_l} \right) = 0$ with probability 1. For W^* , from Lemma 3.1, $0 < P(X_l = x) < 1$, $\forall x, \forall i, t = 1 \text{ or } 0$, $\lim_{n \to \infty} \frac{1}{n} \sum_{l:X_{l,j}=t} W_l^* = \lim_{n \to \infty} \frac{1}{n} \sum_{x:x_j=t} \sum_{l:X_l=x} W_l^*$ $= \lim_{n \to \infty} \sum_{x:x_j=t} \frac{1}{n} \sum_{l:X_l=x} \frac{1}{P(X_l=x)}$ with probability 1 (Law of Large Number). Since features are binary, $\lim_{n \to \infty} \frac{1}{n} \sum_{l:X_{l,j}=0} W_l^* = 2^{p-1}, \quad \lim_{n \to \infty} \frac{1}{n} \sum_{l:X_{l,k}=1,X_{l,j}=0} W_l^* = 2^{p-2}$ and therefore, we have following equation with probability 1: $\lim_{n \to \infty} \left(\frac{X_{\cdot,k}^T(W^* \otimes X_{\cdot,j})}{W^*T_{X_{\cdot,j}}} - \frac{X_{\cdot,k}^T(W^* \otimes (1-X_{\cdot,j}))}{W^*T(1-X_{\cdot,j})} \right) = \frac{2^{p-2}}{2^{p-1}} - \frac{2^{p-2}}{2^{p-1}} = 0.$

Kun Kuang, et al. Stable Prediction across Unknown Environments. *KDD*, 2018.

Causal Regularizer

Set feature *j* as treatment variable



Zheyan Shen, et al. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.

Causally Regularized Logistic Regression

$$\begin{array}{ll} \min & \sum_{i=1}^{n} W_{i} \cdot \log(1 + \exp((1 - 2Y_{i}) \cdot (x_{i}\beta))), \\ s.t. & \sum_{j=1}^{p} \left\| \frac{X_{-j}^{T} \cdot (W \odot I_{j})}{W^{T} \cdot I_{j}} - \frac{X_{-j}^{T} \cdot (W \odot (1 - I_{j}))}{W^{T} \cdot (1 - I_{j})} \right\|_{2}^{2} \leq \lambda_{1}, \\ W \geq 0, & \|W\|_{2}^{2} \leq \lambda_{2}, & \|\beta\|_{2}^{2} \leq \lambda_{3}, & \|\beta\|_{1} \leq \lambda_{4}, \\ \\ & \text{Sample} \\ \text{reweighted} \\ \text{logistic loss} & (\sum_{k=1}^{n} W_{k} - 1)^{2} \leq \lambda_{5}, \\ & \text{Causal} \\ \text{Contribution} \end{array}$$

Zheyan Shen, et al. Causally Regularized Learning on Data with Agnostic Bias. ACM MM, 2018.

NICO - Non-I.I.D. Image Dataset with Contexts

- Data size of each class in NICO
 - Sample size: thousands for each class
 - Each superclass: 10,000 images
 - Sufficient for some basic neural networks (CNN)
- Samples with contexts in NICO

cross bridge

in city

with people

on beach

Dog	on beach	eating	in cage	in water	lying	on grass	in street	running	on snow
Horse	in forest	at home	in river	lying	on grass	in street	aside people	running	on snow
Boat								ø	

in river

sailboat

in sunset

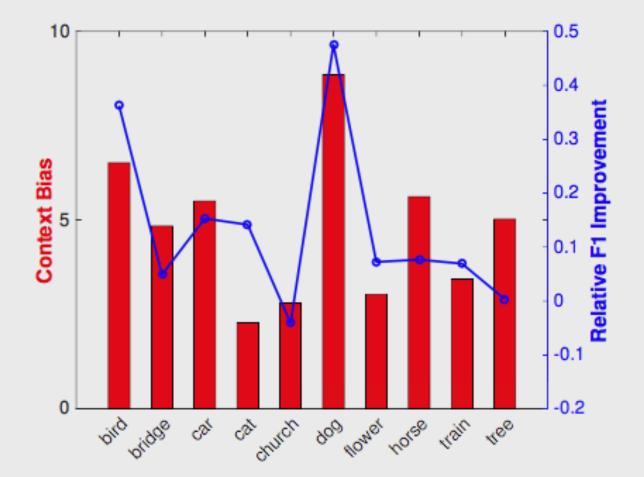
Animal	DATA SIZE	Vehicle	DATA SIZE
BEAR	1609	AIRPLANE	930
BIRD	1590	BICYCLE	1639
CAT	1479	BOAT	2156
Cow	1192	Bus	1009
Dog	1624	CAR	1026
ELEPHANT	1178	HELICOPTER	1351
HORSE	1258	MOTORCYCLE	1542
MONKEY	1117	TRAIN	750
Rat	846	TRUCK	1000
Sheep	918		

wooden

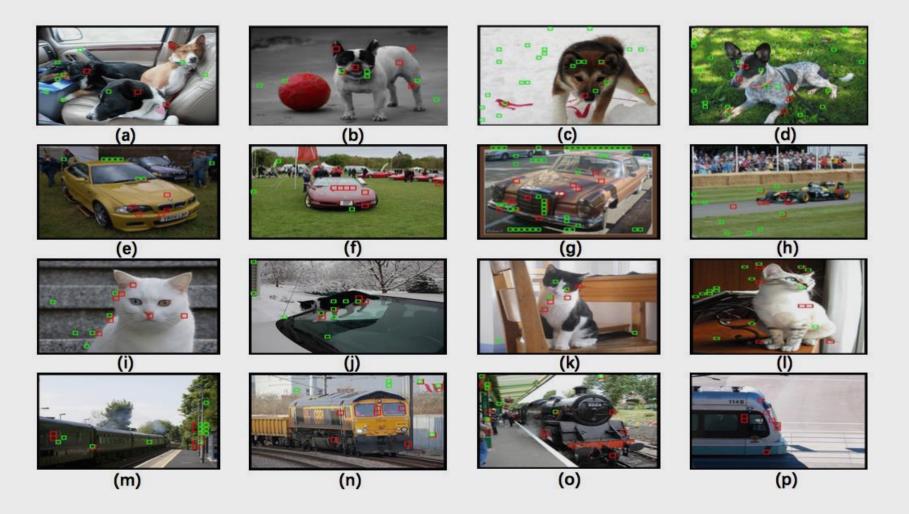
at wharf

yacht

Experimental Result - insights



Experimental Result - insights



Stable Learning with Continuous Variables

Variable Decorrelation by Sample Reweighting:

$$\min_{W} \sum_{j=1}^{p} \left\| \mathbb{E}[\mathbf{X}_{,j}^{T} \boldsymbol{\Sigma}_{W} \mathbf{X}_{,-j}] - \mathbb{E}[\mathbf{X}_{,j}^{T} W] \mathbb{E}[\mathbf{X}_{,-j}^{T} W] \right\|_{2}^{2}$$

Decorrelated Weighted Regression:

$$\min_{W,\beta} \sum_{i=1}^{n} W_i \cdot (Y_i - \mathbf{X}_{i,\beta})^2$$

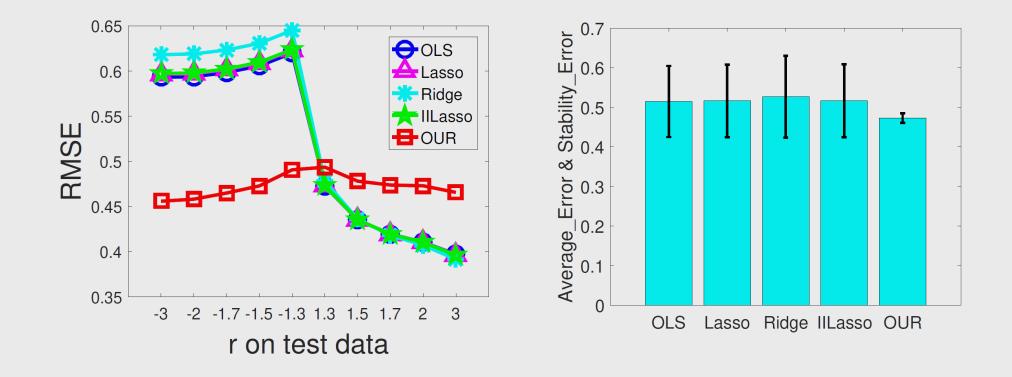
$$s.t \qquad \sum_{j=1}^{p} \left\| \mathbf{X}_{,j}^T \mathbf{\Sigma}_W \mathbf{X}_{,-j} / n - \mathbf{X}_{,j}^T W / n \cdot \mathbf{X}_{,-j}^T W / n \right\|_2^2 < \lambda_2$$

$$|\beta|_1 < \lambda_1, \quad \frac{1}{n} \sum_{i=1}^{n} W_i^2 < \lambda_3,$$

$$(\frac{1}{n} \sum_{i=1}^{n} W_i - 1)^2 < \lambda_4, \quad W \succeq 0,$$

$$(12)$$

Stable Learning with *Continuous* Variables



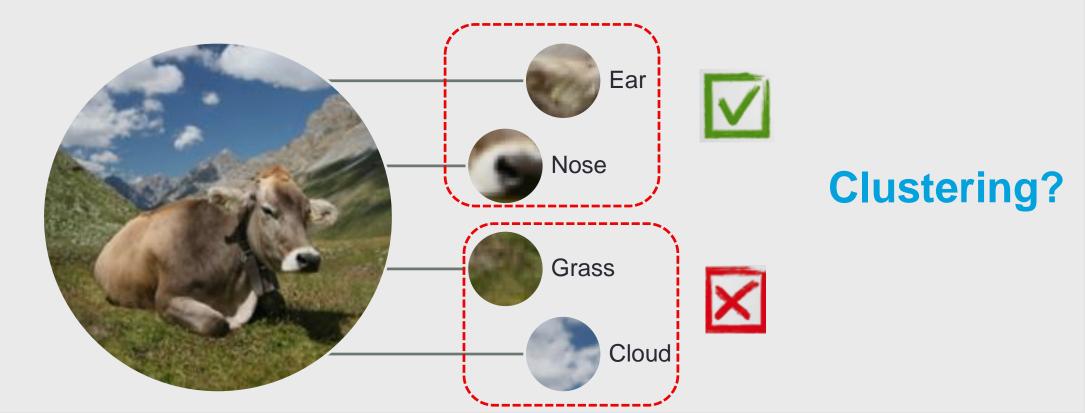
Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, Bo Li. Stable Prediction with Model Misspecification and Agnostic Distribution Shift. AAAI, 2020.

More detailed analysis:

$$\hat{\beta}_{V_{OLS}} = \beta_V + \left(\frac{1}{n}\sum_{i=1}^n \mathbf{V}_i^T \mathbf{V}_i\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \mathbf{V}_i^T g\left(\mathbf{S}_i\right)\right) \qquad \hat{\beta}_{S_{OLS}} = \beta_S + \left(\frac{1}{n}\sum_{i=1}^n \mathbf{S}_i^T \mathbf{S}_i\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \mathbf{S}_i^T g\left(\mathbf{S}_i\right)\right) \\ + \left(\frac{1}{n}\sum_{i=1}^n \mathbf{V}_i^T \mathbf{V}_i\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \mathbf{V}_i^T \mathbf{S}_i\right) \left(\beta_S - \hat{\beta}_{S_{OLS}}\right) \qquad + \left(\frac{1}{n}\sum_{i=1}^n \mathbf{S}_i^T \mathbf{S}_i\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \mathbf{S}_i^T \mathbf{V}_i\right) \left(\beta_V - \hat{\beta}_{V_{OLS}}\right)$$

- We can focus on only the spurious part of correlation
- But how?
- Leveraging the abundant sources of unlabeled data!

ASSUMPTION 3. The variables $\mathbf{X} = \{X_1, X_2, \dots, X_p\}$ could be partitioned into k distinct groups $\mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_k$. For $\forall i, j, i \neq j$ and $X_i, X_j \in \mathbf{G}_l, l \in \{1, 2, \dots, k\}$, we have $P_{X_i X_j}^e = P_{X_i X_j}$.



- Feature Partition by Stable Correlation Clustering
 - Define the dissimilarity of two variables:

$$Dis(X_i, X_j) = \sqrt{\frac{1}{M-1} \sum_{l=1}^{M} \left(Corr(X_i^l, X_j^l) - Ave_Corr(X_i, X_j) \right)^2},$$

Remove the correlation between variables via sample reweighting:

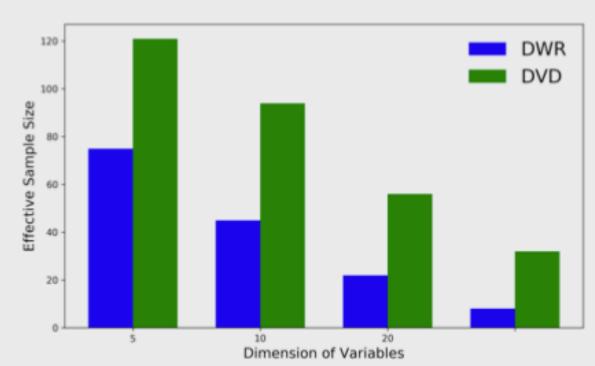
$$\begin{split} \min_{W} \sum_{i \neq j} \mathbb{I}(i,j) \left\| (\mathbf{X}_{,i}^{T} \Sigma_{W} \mathbf{X}_{,j}/n - \mathbf{X}_{,i}^{T} W/n \cdot \mathbf{X}_{,j}^{T} W/n) \right\|_{2}^{2} \\ \text{s.t} \ \frac{1}{n} \sum_{i=1}^{n} W_{i}^{2} < \gamma_{1}, \quad \left(\frac{1}{n} \sum_{i=1}^{n} W_{i} - 1 \right)^{2} < \gamma_{2}, \quad W \ge 0 \end{split}$$

Zheyean Shen, Peng Cui, Jiashuo Liu, Tong Zhang, Bo Li and Zhitang Chen. Stable Learning via Differentiated Variable Decorrelation. KDD, 2020.

n = 200 n

 $= n \pm 0.2 r = 1.9$

			:	Scenario 1:	varying sample	size n		
n, p_{v_b}, r	<i>n</i> =	120, $p_{\upsilon_b} = p * 0$.	2, <i>r</i> = 1.9	$n = 160, p_{\upsilon_b} = p * 0.2, r = 1.9$				
Methods	β_Error	Average_Error	Stability_Error	β_Error	Average_Error	Stability_Error	1	
OLS	1.988	0.470	0.087	1.870	0.489	0.105		
Lasso	2.021	0.476	0.092	1.905	0.494	0.110		
IILasso	2.035	0.475	0.094	1.920	0.498	0.113		
DWR	2.012	0.545	0.099	1 991	0.502	0.076		
Our	1.892	0.469	0.040	1.741	0.489	0.050		
Scenario 2: varying number of unstable variables p_{v_b}								
n, p_{v_b}, r	<i>n</i> =	200, $p_{v_b} = p * 0$.	2, <i>r</i> = 1.9	$n = 200, p_{\upsilon_h} = p * 0.3, r = 1.9$				
Methods	β_Error	Average_Error	Stability_Error	β _Error	Average_Error	Stability_Error		
OLS	1.839	0.522	0.121	2.128	0.563	0.179		
Lasso	1.876	0.529	0.129	2.176	0.571	0.186		
IILasso	1.894	0.538	0.149	2.196	0.575	0.191		
DWR	1.656	0.485	0.081	1.881	0.469	0.092		
-Our	1.369	0.476	0.042	1.641	0.460	0.064		
			Scenar	io 3: varyin	g bias rate r on t	raining data		
n, p_{v_b}, r	<i>n</i> =	200, $p_{v_b} = p * 0$.	2, <i>r</i> = 1.6	$n = 200, p_{\upsilon_b} = p * 0.2, r = 1.8$				
Methods	β_Error	Average_Error	Stability_Error	β_Error	Average_Error	Stability_Error	1	
OLS	1.296	0.452	0.064	1.780	0.510	0.117		
Lasso	1.321	0.455	0.067	1.812	0.516	0.123		
IILasso	1.339	0.457	0.070	1.829	0.519	0.125		
DWR	1.153	0.457	0.033	1 262	0.458	0.035		
Our	1.236	0.463	0.021	1.236	0.450	0.023		

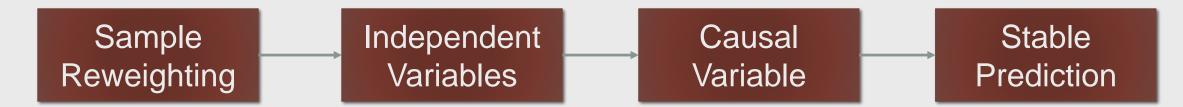


Effective Sample Size

Zheyean Shen, Peng Cui, Jiashuo Liu, Tong Zhang, Bo Li and Zhitang Chen. Stable Learning via Differentiated Variable Decorrelation. KDD, 2020.

From Causal problem to Learning problem

• Previous logic:



• More direct logic:

Interpretation from Statistical Learning perspective

Consider the linear regression with misspecification bias

$$y = x^{\top}\overline{\beta}_{1:p} + \overline{\beta}_0 + b(x) + \epsilon$$

Goes to infinity when perfect collinearity exists!

Bias term with bound $b(x) \leq \delta$

- By accurately estimating $\overline{\beta}$ with the property that b(x) is uniformly small for all x, we can achieve stable learning.
- However, the estimation error caused by misspecification term can be as bad as $\|\hat{\beta} \overline{\beta}\|_2 \le 2(\delta/\gamma) + \delta$, where γ^2 is the smallest eigenvalue of centered covariance matrix.

Zheyan Shen, et al. Stable Learning via Sample Reweighting. AAAI, 2020.

NICO - Non-I.I.D. Image Dataset with Contexts

- Data size of each class in NICO
 - Sample size: thousands for each class
 - Each superclass: 10,000 images
 - Sufficient for some basic neural networks (CNN)
- Samples with contexts in NICO

cross bridge

on beach

Dog	on beach	eating	in cage	in water	lying	on grass	in street	running	on snow
Horse On beach	in forest	at home	in river	lying	on grass	in street	aside people	running	on snow
Boat									Real Providence

in river

sailboat

in sunset

with people

in city

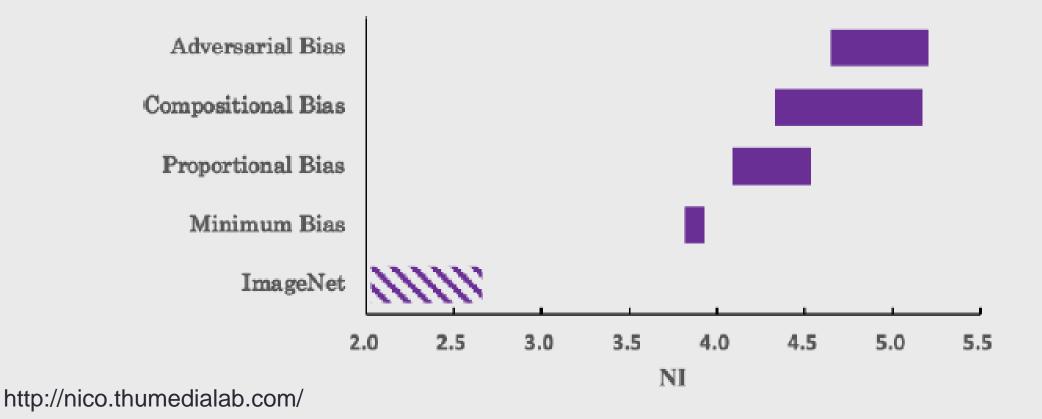
Animal	DATA SIZE	Vehicle	DATA SIZE
BEAR	1609	AIRPLANE	930
BIRD	1590	BICYCLE	1639
CAT	1479	BOAT	2156
Cow	1192	Bus	1009
Dog	1624	CAR	1026
ELEPHANT	1178	HELICOPTER	1351
HORSE	1258	MOTORCYCLE	1542
MONKEY	1117	TRAIN	750
Rat	846	TRUCK	1000
Sheep	918		

yacht

wooden

at wharf

NICO - Non-I.I.D. Image Dataset with Contexts



Yue He, Zheyan Shen, Peng Cui. Towards Non-IID Image Classification: A Dataset and Baselines. Pattern Recognition, 2020.

Conclusions

 Why can't the current AI generalize well to unknown environments?

Stable Learning: Try to promote the convergence of causal inference and machine learning.

Reference

- Hao Zou, Peng Cui, Bo Li, Zheyan Shen, Jianxin Ma, Hongxia Yang, Yue He. Counterfactual Prediction for Bundle Treatments. *NeurIPS*, 2020.
- Zheyean Shen, Peng Cui, Jiashuo Liu, Tong Zhang, Bo Li and Zhitang Chen. Stable Learning via Differentiated Variable Decorrelation. *KDD*, 2020.
- Yue He, Peng Cui, Jianxin Ma, Zou Hao, Xiaowei Wang, Hongxia Yang and Philip S. Yu. Learning Stable Graphs from Multiple Environments with Selection Bias. *KDD*, 2020.
- Renzhe Xu, Peng Cui, Kun Kuang, Bo Li, Linjun Zhou, Zheyan Shen and Wei Cui. Algorithmic Decision Making with Conditional Fairness. *KDD*, 2020.
- > Yue He, Zheyan Shen, Peng Cui. Towards Non-I.I.D. Image Classification: A Dataset and Baselines. *Pattern Recognition*, 2020.
- > Zheyan Shen, Peng Cui, Tong Zhang. Stable Learning via Sample Reweighting. **AAAI**, 2020.
- Kun Kuang, Ruoxuan Xiong, Peng Cui, Susan Athey, Bo Li. Stable Prediction with Model Misspecification and Agnostic Distribution Shift. AAAI, 2020.
- Hao Zou, Kun Kuang, Boqi Chen, Peng Cui, Peixuan Chen. Focused Context Balancing for Robust Offline Policy Evaluation. *KDD*, 2019.
- > Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. *ICML*, 2019.
- Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Li, Bo Li. Stable Prediction across Unknown Environments. *KDD*, 2018.
- > Zheyan Shen, Peng Cui, Kun Kuang, Bo Li. Causally Regularized Learning on Data with Agnostic Bias. ACM Multimedia, 2018.
- Kun Kuang, Peng Cui, Bo Li, Shiqiang Yang. Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing. *KDD*, 2017.
- Kun Kuang, Peng Cui, Bo Li, Shiqiang Yang. Treatment Effect Estimation with Data-Driven Variable Decomposition. **AAAI**, 2017.

Thanks!

Peng Cui cuip@tsinghua.edu.cn http://pengcui.thumedialab.com

Research Problems • Comes down to the Model	Stable Learning Prediction Prediction Performance P	Dog $\[\begin{tabular}{ c c c c c c c } \hline \end{tabular} Later & \end{tabular} ta$
Distribution 1 Accuracy 1 I.I.D. Learning Distribution 2 Accuracy 2 Distribution 1 Model Distribution 3 Accuracy 3 VAR (Acc) Stable Prediction	Learning Process	Horse in forest in freest at home in fiver line line line line line line line line
Distribution n Accuracy n Transfer Learning	True Model	Boat on beach cross bridge in city with people in river subbas in sunset at what wooden yacht