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Open problem:
It is hard to find latent variables and their underlying causal structure from
observarional dataset X.
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Stress, Depression, and Coping are latent variables.
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Related Works
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Causal
Discovery
Methods |«

On Latent

Variables
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b.l.-_
M Limitations:

The first two strategies do not focus on the structure of latent variables;
The third strategy needs more pure measurement variables and output Markov equivalence
classes;

The last one, some extract only second-order statistics in identifying latent factors, and
some do not apply to the case where there are multiple latent variables behind two observed

variables. 3
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IN Condition (Shimizu et al., JMLR’11)
Z > Y
DEF[I Noise(IN), condition] (Z,Y) follows the IN

condition iff the residual of regressingY on Z, Y — @'Z, is
Independent from Z.

» Graphical criterion

Let Z and Y be variables in a Linear, Non-Gaussian Acyclic Model
(LINGAM). Z and Y satisfies the IN condition iff

« All variables in Z are causally earlier than Y, and

« the common cause for Y and each variable in Z, if there is any, Is
In Z.
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Z > Y
DEFI Noise(IN), condition] (Z,Y) follows the IN
condition iff the residual of regressingY on Z, Y — @'Z, is
Independent from Z.
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Let Z and Y be variables in a Linear, Non-Gaussian Acyclic Model

(LINGAM). Z and Y satisfies the IN condition iff
« All variables in Z are causally earlier than Y, and
 the common cause for Y and each variable in Z, if there is any, Is
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IN Condition (Shimizu et al., JMLR’11)

Z > Y
DEF[Independent Noise(IN), condition] (Z,Y) follows the IN
condition iff the residual of regressingY on Z, Y — @'Z, is
Independent from Z.

» Let Z and Y be variables in a Linear, Non-Gaussian Acyclic Model
(LINGAM). Z and Y satisfies the IN condition iff
« All variables in Z are causally earlier than Y, and
« the common cause for Y and each variable in Z, if there is any, Is
In Z.

LetZ = {X;,X3}and Y = {X,}.

(Z,Y) follows the IN condition.

e {X,,X3}Iis causally earlier than {X,} and
their common cause ({X;, X3}) are both in Z.

Is it possible to solve the latent-variable problem similar to IN condition?
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Linear Non-Gaussian Latent VVariable Model
(LINGLaM)

» Measured variables (e.g., answer scores
In psychometric questionnaires) may not
be directly causally related but were
generated by causally related latent
Variables

« Assume variables were generated by the
Linear, Non-Gaussian Latent Variable
Model (LINGLaM)

B6 O

» The whole model is identifiable with the A simple structure that satisfies LINGLaM
Generalized Independent Noise (GIN)
condition

Task: find latent variables and their underlying causal structure from these

observed data.
10
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Basic ldea
Using Measured Variables as Surrogate

11
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Basic ldea

Using Measured Variables as Surrogate
Consider Y = {X;, X,, X3}, we have

University

C

Xl ay bl L £X,
Xo|=1]as bg |:Ll:| + | X,
X3 ag by L7 € X5
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3 nonzero vector w s.t. w - Cov(Y, Ly ,) = 0, then wA = 0, 50 'Y = w'E is independent

from L.

12
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Basic ldea

Using Measured Variables as Surrogate
Consider Y = {X;, X,, X3}, we have

University
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Xo|=1]as bg |:Ll:| + | X,
X3 ag by L7 € X5
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3 nonzero vector w s.t. w - Cov(Y, Ly ,) = 0, then wA = 0, 50 'Y = w'E is independent
from L.

However, we don’t have access to L, and L,

13



A Carnegie

DMIR [ Mell
Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs, NeurlPS -2020 % Ugiwg?-sity

Basic ldea

Using Measured Variables as Surrogate
Consider Y = {X;, X,, X3}, we have

Xl ay bl L £X,
Xo|=]az b [Ll] + | €x,
X3 ag by L2 EX,

_\"—J H—i
Y A Ey

3 nonzero vector w s.t. w - Cov(Y, Ly ,) = 0, then wA = 0, 50 'Y = w'E is independent

from L.

However, we don’t have access to L, and L,

Fortunately, use Z = (X4, X¢)T instead, we have
3 nonzero vector w s.t. w - Cov(Y,Z) =0
w = [aybs — byaz, byaz — aybs,a1b, — bya,]”

= wTY is independent from L.

14
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GIN Condition
DEF[G I Noise(GIN), condition] (Z,Y) follows
the GIN condition iff there exists non-zeros w such that w TE[YZ!] =
0 and w'Y is independent from Z.

15
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GIN Condition
DEF[G I Noise(GIN), condition] (Z,Y) follows
the GIN condition iff there exists non-zeros w such that w TE[YZ"] =

0 and w'Y is independent from Z.
* IN condition can be seen as a special case of the GIN condition (See more details
in the Proposition 2).
For example, ({X,, X5}, {X; }) satisfy IN contiditon iff ({X,, X5}, {X;, X,, X5}) satisfy GIN condition

16
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GIN Condition
DEF[Generalized Independent Noise(GIN), condition] (Z,Y) follows
the GIN condition iff there exists non-zeros w such that w TE[YZ"] =

0 and w'Y is independent from Z.
« IN condition can be seen as a special case of the GIN condition (See more details
in the Proposition 2).
For example, ({X,, X5}, {X; }) satisfy IN contiditon iff ({X,, X5}, {X,X,, X5}) satisfy GIN condition
Graphical criterion

» LetZ and Y be variables in a LINGLaM. If (Z,Y) follows the GIN condition, there is an
exogenous subset of the common cause of Y to d-separate from Y from Z.

v ({X4,X6}, {Xl,Xz,X3}); ({Xg,X4 }, {Xl,Xz,Xs}) SatiSfy GIN e

Vo (X4, Xe b AX1, Xo, Xs}); (1X5, X}, {Xq, X, X5 }) ... don't satisfy GIN @

Determine where the latent variables are X
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GIN Condition
DEF[Generalized Independent Noise(GIN), condition] (Z,Y) follows
the GIN condition iff there exists non-zeros w such that w TE[YZ"] =

0 and w'Y is independent from Z.
* IN condition can be seen as a special case of the GIN condition (See more details
in the Proposition 2).
For example, ({X,, X5}, {X; }) satisfy IN contiditon iff ({X,, X5}, {X;, X,, X5}) satisfy GIN condition

Graphical criterion

» LetZ and Y be variables in a LINGLaM. If (Z,Y) follows the GIN condition, there is an
exogenous subset of the common cause of Y to d-separate from Y from Z.

VX, X b AKX X0, X5 ) (X5, Xy 3 (X, X, X)) ... satisfy GIN e

VX, X b AKX X, X)) (X3, X ) {X1, X2, X5)) ... don'’t satisfy GIN @

Determine the causal order of the latent variables 18



SRR Carnegie
. . " . . . DMIR W Mellon
Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs, NeurlPS -2020 Nl University

Outline

» Estimating LINGLaM Based on GIN

19
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Estimating LINGLaM Based on GIN

We proposed a two-steps algorithm.

« Step 1: find causal clusters (variables sharing the same latent
variables as parents);

« Step 2. determine causal order of the latent variables;
« Estimate the coefficients if needed

20
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Estimating LINGLaM Based on GIN

We proposed a two-steps algorithm.

« Step 1: find causal clusters (variables sharing the same latent
variables as parents);

« Step 2. determine causal order of the latent variables;
« Estimate the coefficients if needed

Ground-truth graph

21
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Estimating LINGLaM Based on GIN

We proposed a two-steps algorithm.

« Step 1: find causal clusters (variables sharing the same latent
variables as parents);

Step 2: determine causal order of the latent variables;
Estimate the coefficients if needed

E.g., Test |latent|=1, we have
({X1, ..., X4, X7, X5}, {X5, Xg}) satisfies GIN.
Thus, {Xs, X} is a cluster.
Similarly,
({X1, ..., X4, X5, X}, {X7, Xg}) satisfies GIN.

Thus, {X-, Xg} is a cluster.
Run Step 1 >

22
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Estimating LINGLaM Based on GIN

We proposed a two-steps algorithm.

« Step 1: find causal clusters (variables sharing the same latent
variables as parents);

Step 2: determine causal order of the latent variables;
Estimate the coefficients if needed

E.g., Test |latent|=1, we have
({X1, ..., X4, X7, X5}, {X5, Xg}) satisfies GIN.
Thus, {Xs, X} is a cluster.
Similarly,
({X1, ..., X4, X5, X}, {X7, Xg}) satisfies GIN.

Thus, {X-, Xg} is a cluster.
Run Step 1 >

Cluster 2
23
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Estimating LINGLaM Based on GIN

We proposed a two-steps algorithm.

« Step 1: find causal clusters (variables sharing the same latent
variables as parents);

« Step 2. determine causal order of the latent variables;
« Estimate the coefficients if needed

Ground-truth graph

Cluster 1

E.g., Test |latent|=2, we have

({Xs, Xo, X7, X}, (X1, Xy, X5 )) satisfies GIN. %)
Thus, {X;, X,, X5} is a cluster. o Ol I Ny \Y
\i Y| Y S
YU £ | \\
Run Step 1 -
. (Xs)
Cluster 2

24
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Estimating LINGLaM Based on GIN

We proposed a two-steps algorithm.

« Step 1: find causal clusters (variables sharing the same latent
variables as parents);

« Step 2. determine causal order of the latent variables;
« Estimate the coefficients if needed

E.g., Test |latent|=2, we have
({Xs, Xo, X7, Xg}, {X1, X5, X3}) satisfies GIN.
Thus, {X;, X,, X5} is a cluster.

Run Step 1 >

o \,‘r A ~/

Ground-truth graph

Cluster 1

Cluster 2

E.g. Latent Causal Order

({X3, X4}, {X,,X,, X)) satisfies GIN,
and ({X5, X,},{X1, X5, X,}) satisfies

GIN.
We have {L,, L,} is causally earlier @
than L; and L,.

® ®

Run Step 2

25
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* EXxperiments and Application

26
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Experiments

We simulate data following the LiINGLaM, including 4 cases, with different DAG
structures for and measurement variables and latent variables.

Goal: find clusters (determine the location of latent variables)?

« Latent oimission: measure omitted latent variables

« Latent commission: measure falsely detected latent variables

« Mismeasurements: measure the misclassification of observed variables

Table 1: Results with GIN, LSTC, FOFC, and BPC for learning causal clusters.

Latent omission Latent commission Mismeasurements

Algorithm GIN LSTC FOEC BPC GIN LSTC FOFC BPC GIN LSTC FOEC BPC

500 || 0.00(0) | 0.00(0) | 1.00(10) | 0.50(10) || 0.00(0) | 0.00(0) | 0.00(0) | 0.00(0) |[0.00(0) | 0.00(0) | 0.00(0) | 0.00(0)
Case 1 | 1000 || 0.00(0) | 0.00(0) | 1.00(10) | 0.50(10) || 0.00(0) [ 0.00(0) | 0.00(0) | 0.00(0) |[0.00(0) || 0.00(0) | 0.00(0) | 0.00(0)

500 |[ 0.10(2) | 0.20(4) | 0.9(10) | 0.50(10) || 0.00(0) [ 0.05(1) | 0.00(0) | 0.00(0) |[0.12(2) | 0.12(4) | 0.00(0) | 0.20(10)

Case 2 [ T000 |[ 0.05(1) | 0.15(3) | T.00(10) | 0.50(10

)
)

2000 ([ 0.00(0) [ 0.00(0) | 1.00(10) | 0.50(10) |[ 0.00(0) | 0.00(0) | 0.00(0) | 0.00(0) [[0.00(0) | 0.00(0) | 0.00(0) | 0.00(0)
)
) [I70.00(0) [ 0.00(0) [ 0.00(0) | 0.00(0) [[0.04(T) || 0.12(3) | 0.00(0) | 0.20(10)
)

Case 3 | 1000 || 0.06(2) | 0.13(2) | 0.16(10) | 0.00(0) [f 0.00(0) | 0.00(0) | 0.00(0) | 0.00(0) [[0.06(2) || 0.00(0) | 0.00(0) | 0.00(0
2000 || 0.00(0) [ 0.00(0) | 0.50(10) | 0.00(0) || 0.00(0) [ 0.00(0) | 0.00(0) | 0.00(0) [[0.00(0) [ 0.00(0) | 0.00(0) | 0.00(0

(
( (
( (
( (
( (
2000 || 0.00(0) [ 0.00(0) | 1.00(10) | 0.50(10) || 0.00(0) | 0.02(2) | 0.00(0) | 0.00(0) |[0.00(0) [ 0.00(0) | 0.00(0) | 0.20(10)
500 || 0.203) [ 0.20(3) | 0.13(9) | 0.10(1) || 0.00(0) | 0.03(3) | 0.00(0) | 0.00(0) |[0.19(3) [ 0.17(3) | 0.00(0) | 0.00(0)
( (
( (
( (
( (

Case 4 [ T000 || 0.10(3) | 0.26(6) | 0.93(10) | 0.66(10) || 0.00(0) | 0.00(0) | 0.00(0) | 0.00(0) [[0.053) [0.11(2) | 0.0I(I) | 0.022
2000 || 0.03(1) | 0.32(6) | 1.00(10) | 0.70(10) || 0.00(0) | 0.00(0) | 0.00(0) | 0.00(0) |[0.04(T) | 0.11(3) | 0.00(10) | 0.00(0

)
)
500 || 0.13(4) | 0.40(6) | 0.90(10) | 0.63(10) || 0.00(0) | 0.23(5) | 0.00(0) | 0.00(0) |[0.04(2) | 0.15(6) | 0.02(2) | 0.06(4)
)
)

Note: The number in parentheses indicates the number of gé:xcurrences that the current algorithm cannot
correctly solve the problem. the bet
\ower
The 10

Our proposed algorithm is more efficient and can find all latent variables! -
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Application to Teacher’s Burnout Data

We apply our algorithm to discover the underlying causal structure behind the Teacher’s
Burnout. The data set contains 28 measured variables (See [Byrne, 2010] ).

* Discovered clusters and
causal order of the latent

7

—

/\\L\
\(hld/

variables:
Causal Clusters Observed variables
S (1) RC,, RCy, WO, WO,,
DM, DM,
S (1) CCy, 00, 00,00,
Ss (1) PS,, PS,
S, (1) ELC,, ELCy,ELCs,ELCY,
ELC,
S:(2) SE,, SE,, SE,, EE;,
EE,, EEs, DP;, PA,
S (3) DPQ, PAl, P 42

US> 18 > L(S) > L5 » 108) > LiS,)
(from root to leaf)

[DM2

P

Hypothesized model by experts [Byrne, 2010]

Most of results are consistent with the hypothesized model

28
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 Conclusion and Further work
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Conclusion and Further work

Conclusion
« Essential to learn hidden causal representation

 The whole latent variable causal model is identifiable under suitable
assumptions

« GIN condition is a powerful extension of IN condition

Further work

v Develope an efficient algorithm that is able to recover the the LINGLaM
with directed edges between observed variables in a principled way;

v Show the (partial) identifiability of the causal coefficients in the model
and develop an estimation method for them.

30
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Thank you
for your attention!
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