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Background

Open problem:

It is hard to find latent variables and their underlying causal structure from 

observarional dataset X.

Stress, Depression, and Coping are latent variables.

Observational dataset

𝑿1 𝑋11 𝑋12 … 𝑋1𝑛

𝑿2 𝑋21 𝑋22 … 𝑋2𝑛

𝑿3 . 𝑋31 𝑋32 … 𝑋3𝑛

𝑿4 𝑋41 𝑋42 … 𝑋4𝑛

𝑿5 𝑋51 𝑋52 … 𝑋5𝑛

𝑿6 𝑋61 𝑋62 … 𝑋6𝑛

𝑿7 𝑋71 𝑋72 … 𝑋7𝑛

𝑿8 𝑋81 𝑋82 … 𝑋8𝑛

𝑿9 𝑋91 𝑋92 … 𝑋9𝑛

Cluster 1

Cluster 3

Cluster 2

Latent Causal Structure

Causal Discovery

1 2 … 𝑛

𝐗

𝑿2

𝑿5

𝑿8

𝑿1 𝑿3 𝑿7

𝑿6

𝑿9

𝑿4
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Related Works

Causal 

Discovery

Methods

On Latent 

Variables

The classic constraint-based methods, such as, FCI (Spirtes, et al., 

UAI’1995), and RFCI (Colombo, et al., Ann Stat’2012).

The Over-complete ICA methods, such as, LvLiNGAM (Hoyer 

et al., IJAR’2008).

 Limitations:

• The first two strategies do not focus on the structure of latent variables;

• The third strategy needs more pure measurement variables and output Markov equivalence 

classes;

• The last one, some extract only second-order statistics in identifying latent factors, and 

some do not apply to the case where there are multiple latent variables behind two observed 

variables.

Tetrad constraints methods, such as, BPC (Silva et al., 

JMLR’2006),  and FOFC (Kummerfeld and Ramsey, KDD’2016).

Non-Gaussian-based methods, such as, noisy ICA(Shimizu et al., 

NC’2009), ECA (Anandkumar et al., ICML’ 2013), and Triad 

condition (Cai et al, NeurIPS’2019).
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IN Condition (Shimizu et al., JMLR’11)

𝒁 𝑌
DEF[Independent Noise(IN), condition] (𝒁, 𝑌) follows the IN 

condition iff the residual of regressing 𝑌 on 𝒁, 𝑌 − ෥𝜔T𝒁, is 

independent from 𝒁. 

Let 𝒁 and 𝑌 be variables in a Linear, Non-Gaussian Acyclic Model 

(LiNGAM). 𝒁 and 𝑌 satisfies the IN condition iff

• All variables in 𝒁 are causally earlier than 𝑌, and 

• the common cause for 𝑌 and each variable in 𝒁, if there is any, is 

in 𝒁.

➢ Graphical criterion
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IN Condition (Shimizu et al., JMLR’11)

𝒁 𝑌
DEF[Independent Noise(IN), condition] (𝒁, 𝑌) follows the IN 

condition iff the residual of regressing 𝑌 on 𝒁, 𝑌 − ෥𝜔T𝒁, is 

independent from 𝒁. 

Let 𝒁 and 𝑌 be variables in a Linear, Non-Gaussian Acyclic Model 

(LiNGAM). 𝒁 and 𝑌 satisfies the IN condition iff

• All variables in 𝒁 are causally earlier than 𝑌, and 

• the common cause for 𝑌 and each variable in 𝒁, if there is any, is 

in 𝒁.

Let 𝒁 = {𝑋2} and 𝑌 = {𝑋1}.
• (𝒁, 𝑌) follows the IN condition.

• {𝑋2} is causally earlier than {𝑋1} and 

their common cause ({𝑋2}) are both in 𝒁.

X2 X3

X1 X4

➢ Graphical criterion
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IN Condition (Shimizu et al., JMLR’11)

𝒁 𝑌
DEF[Independent Noise(IN), condition] (𝒁, 𝑌) follows the IN 

condition iff the residual of regressing 𝑌 on 𝒁, 𝑌 − ෥𝜔T𝒁, is 

independent from 𝒁. 

Let 𝒁 and 𝑌 be variables in a Linear, Non-Gaussian Acyclic Model 

(LiNGAM). 𝒁 and 𝑌 satisfies the IN condition iff

• All variables in 𝒁 are causally earlier than 𝑌, and 

• the common cause for 𝑌 and each variable in 𝒁, if there is any, is 

in 𝒁.

Let 𝒁 = {𝑋2} and 𝑌 = {𝑋3}.
• (𝒁, 𝑌) follows the IN condition.

• {𝑋2} is causally earlier than {𝑋3} and 

their common cause ({𝑋2}) are both in 𝒁.

X2 X3

X1 X4

➢ Graphical criterion
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IN Condition (Shimizu et al., JMLR’11)

𝒁 𝑌
DEF[Independent Noise(IN), condition] (𝒁, 𝑌) follows the IN 

condition iff the residual of regressing 𝑌 on 𝒁, 𝑌 − ෥𝜔T𝒁, is 

independent from 𝒁. 

Let 𝒁 and 𝑌 be variables in a Linear, Non-Gaussian Acyclic Model 

(LiNGAM). 𝒁 and 𝑌 satisfies the IN condition iff

• All variables in 𝒁 are causally earlier than 𝑌, and 

• the common cause for 𝑌 and each variable in 𝒁, if there is any, is 

in 𝒁.

Let 𝒁 = {𝑋2} and 𝑌 = {𝑋4}.
• (𝒁, 𝑌) follows the IN condition.

• {𝑋2} is causally earlier than {𝑋4} and 

their common cause ({𝑋2}) are both in 𝒁.

X2 X3

X1 X4

➢ Graphical criterion
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IN Condition (Shimizu et al., JMLR’11)

𝒁 𝑌
DEF[Independent Noise(IN), condition] (𝒁, 𝑌) follows the IN 

condition iff the residual of regressing 𝑌 on 𝒁, 𝑌 − ෥𝜔T𝒁, is 

independent from 𝒁. 

➢ Let 𝒁 and 𝑌 be variables in a Linear, Non-Gaussian Acyclic Model 

(LiNGAM). 𝒁 and 𝑌 satisfies the IN condition iff

• All variables in 𝒁 are causally earlier than 𝑌, and 

• the common cause for 𝑌 and each variable in 𝒁, if there is any, is 

in 𝒁.

Let 𝒁 = {𝑋1, 𝑋3} and 𝑌 = {𝑋4}.
• (𝒁, 𝑌) follows the IN condition.

• {𝑋1, 𝑋3} is causally earlier than {𝑋4} and 

their common cause ({𝑋1, 𝑋3}) are both in 𝒁.

X2 X3

X1 X4

Is it possible to solve the latent-variable problem similar to IN condition?
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Linear Non-Gaussian Latent Variable Model 

(LiNGLaM)

A simple structure that satisfies LiNGLaM

Task: find latent variables and their underlying causal structure from these 

observed data.

• Measured variables (e.g., answer scores 

in psychometric questionnaires) may not 

be directly causally related but were 

generated by causally related latent 

Variables

• Assume variables were generated by the 

Linear, Non-Gaussian Latent Variable 

Model (LiNGLaM)

• The whole model is identifiable with the 

Generalized Independent Noise (GIN) 

condition
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Basic Idea
Using Measured Variables as Surrogate
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Basic Idea
Using Measured Variables as Surrogate
Consider  𝒀 = {𝑋1, 𝑋2, 𝑋3}, we have

∃ nonzero vector 𝝎 s.t. 𝝎 ∙ 𝐂𝐨𝐯(𝒀, 𝑳𝟏,𝟐) = 𝟎, then 𝝎𝑨 = 𝟎, so 𝜔T𝒀 = 𝜔T𝐄 is independent 

from 𝐿.

𝑨
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Basic Idea
Using Measured Variables as Surrogate
Consider  𝒀 = {𝑋1, 𝑋2, 𝑋3}, we have

∃ nonzero vector 𝝎 s.t. 𝝎 ∙ 𝐂𝐨𝐯(𝒀, 𝑳𝟏,𝟐) = 𝟎, then 𝝎𝑨 = 𝟎, so 𝜔T𝒀 = 𝜔T𝐄 is independent 

from 𝐿.

𝑨

However, we don’t have access to 𝐿1 and 𝐿2
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Basic Idea
Using Measured Variables as Surrogate
Consider  𝒀 = {𝑋1, 𝑋2, 𝑋3}, we have

∃ nonzero vector 𝝎 s.t. 𝝎 ∙ 𝐂𝐨𝐯(𝒀, 𝑳𝟏,𝟐) = 𝟎, then 𝝎𝑨 = 𝟎, so 𝜔T𝒀 = 𝜔T𝐄 is independent 

from 𝐿.

𝑨

However, we don’t have access to 𝐿1 and 𝐿2

Fortunately, use 𝒁 = (𝑋4, 𝑋6)
T instead, we have  

∃ nonzero vector 𝝎 s.t. 𝝎 ∙ 𝐂𝐨𝐯 𝒀, 𝒁 = 𝟎

𝝎 = 𝑎2𝑏3 − 𝑏2𝑎3, 𝑏1𝑎3 − 𝑎1𝑏3, 𝑎1𝑏2 − 𝑏1𝑎2
𝑇

⇒ 𝜔T𝒀 is independent from 𝐿.
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GIN Condition 
DEF[Generalized Independent Noise(GIN), condition] (𝒁, 𝒀) follows 

the GIN condition iff there exists non-zeros 𝜔 such that 𝜔T𝔼 𝒀𝒁T =
0 and 𝜔T𝒀 is independent from 𝒁.
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GIN Condition 
DEF[Generalized Independent Noise(GIN), condition] (𝒁, 𝒀) follows 

the GIN condition iff there exists non-zeros 𝜔 such that 𝜔T𝔼 𝒀𝒁T =
0 and 𝜔T𝒀 is independent from 𝒁.
• IN condition can be seen as a special case of the GIN condition (See more details 

in the Proposition 2). 

For example, ( 𝑋2, 𝑋3 , 𝑋1 ) satisfy IN contiditon iff 𝑋2, 𝑋3 , 𝑋1, 𝑋2, 𝑋3 satisfy GIN condition

X2 X3

X1 X4
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GIN Condition 
DEF[Generalized Independent Noise(GIN), condition] (𝒁, 𝒀) follows 

the GIN condition iff there exists non-zeros 𝜔 such that 𝜔T𝔼 𝒀𝒁T =
0 and 𝜔T𝒀 is independent from 𝒁.

➢ Let 𝒁 and 𝒀 be variables in a LiNGLaM. If (𝒁, 𝒀) follows the GIN condition, there is an 

exogenous subset of  the common cause of 𝒀 to d-separate from 𝒀 from 𝒁.

✓ ( 𝑋4, 𝑋6 , 𝑋1, 𝑋2, 𝑋3 ); 𝑋𝟑, 𝑋𝟒 , 𝑋𝟏, 𝑋𝟐, 𝑋𝟓 … satisfy GIN 

✓ ( 𝑋4, 𝑋6 , 𝑋1, 𝑋2, 𝑋5 ); 𝑋𝟑, 𝑋𝟔 , 𝑋𝟏, 𝑋𝟐, 𝑋𝟓 … don’t satisfy GIN 

Graphical criterion

Determine where the latent variables are 

• IN condition can be seen as a special case of the GIN condition (See more details 

in the Proposition 2). 

For example, ( 𝑋2, 𝑋3 , 𝑋1 ) satisfy IN contiditon iff 𝑋2, 𝑋3 , 𝑋1, 𝑋2, 𝑋3 satisfy GIN condition
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GIN Condition 
DEF[Generalized Independent Noise(GIN), condition] (𝒁, 𝒀) follows 

the GIN condition iff there exists non-zeros 𝜔 such that 𝜔T𝔼 𝒀𝒁T =
0 and 𝜔T𝒀 is independent from 𝒁.

➢ Let 𝒁 and 𝒀 be variables in a LiNGLaM. If (𝒁, 𝒀) follows the GIN condition, there is an 

exogenous subset of  the common cause of 𝒀 to d-separate from 𝒀 from 𝒁.

✓ ( 𝑋4, 𝑋6 , 𝑋1, 𝑋2, 𝑋3 ); ( 𝑋𝟑, 𝑋𝟒 , 𝑋𝟏, 𝑋𝟐, 𝑋𝟓 ) … satisfy GIN 

✓ ( 𝑋4, 𝑋6 , 𝑋1, 𝑋2, 𝑋5 ); ( 𝑋𝟑, 𝑋𝟔 , 𝑋𝟏, 𝑋𝟐, 𝑋𝟓 ) … don’t satisfy GIN 

Graphical criterion

Determine the causal order of the latent variables  

• IN condition can be seen as a special case of the GIN condition (See more details 

in the Proposition 2). 

For example, ( 𝑋2, 𝑋3 , 𝑋1 ) satisfy IN contiditon iff 𝑋2, 𝑋3 , 𝑋1, 𝑋2, 𝑋3 satisfy GIN condition
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Estimating LiNGLaM Based on GIN
We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent 

variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed
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Estimating LiNGLaM Based on GIN
We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent 

variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed

Ground-truth graph
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Estimating LiNGLaM Based on GIN
We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent 

variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed

Ground-truth graph

Run Step 1

E.g., Test |latent|=1, we have

({𝑋1, … , 𝑋4, 𝑋7, 𝑋8}, {𝑋5, 𝑋6}) satisfies GIN. 

Thus, {𝑋5, 𝑋6} is a cluster.

Similarly,

({𝑋1, … , 𝑋4, 𝑋5, 𝑋6}, {𝑋7, 𝑋8}) satisfies GIN. 

Thus, {𝑋7, 𝑋8} is a cluster.

Cluster 1



23

Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs, NeurIPS -2020

Estimating LiNGLaM Based on GIN
We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent 

variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed

Ground-truth graph

Run Step 1

E.g., Test |latent|=1, we have

({𝑋1, … , 𝑋4, 𝑋7, 𝑋8}, {𝑋5, 𝑋6}) satisfies GIN. 

Thus, {𝑋5, 𝑋6} is a cluster.

Similarly,

({𝑋1, … , 𝑋4, 𝑋5, 𝑋6}, {𝑋7, 𝑋8}) satisfies GIN. 

Thus, {𝑋7, 𝑋8} is a cluster.

Cluster 1

Cluster 2
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Estimating LiNGLaM Based on GIN
We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent 

variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed

Ground-truth graph

Run Step 1

E.g., Test |latent|=2, we have

({𝑋5, 𝑋6, 𝑋7, 𝑋8}, {𝑋1, 𝑋2, 𝑋3}) satisfies GIN. 

Thus, {𝑋1, 𝑋2, 𝑋3} is a cluster.

Cluster 3

Cluster 1

Cluster 2
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Estimating LiNGLaM Based on GIN
We proposed a two-steps algorithm.

• Step 1: find causal clusters (variables sharing the same latent 

variables as  parents);

• Step 2:  determine causal order of the latent variables;

• Estimate the coefficients if needed

E.g., 
({𝑋3, 𝑋4}, {𝑋1, 𝑋2, 𝑋5}) satisfies GIN, 

and ({𝑋3, 𝑋4}, {𝑋1, 𝑋2, 𝑋7}) satisfies 

GIN. 

We have {𝐿1, 𝐿2} is causally earlier 

than 𝐿3 and 𝐿4.

Ground-truth graph

Run Step 1

E.g., Test |latent|=2, we have

({𝑋5, 𝑋6, 𝑋7, 𝑋8}, {𝑋1, 𝑋2, 𝑋3}) satisfies GIN. 

Thus, {𝑋1, 𝑋2, 𝑋3} is a cluster.

Run Step 2

Cluster 3

Cluster 1

Cluster 2

Latent Causal Order
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Experiments

Our proposed algorithm is more efficient and can find all  latent variables!

We simulate data following the LiNGLaM, including 4 cases, with different DAG 

structures for and measurement variables and latent variables. 

Goal: find clusters (determine the location of latent variables)? 

• Latent oimission:  measure omitted latent variables

• Latent commission: measure falsely detected latent variables

• Mismeasurements: measure the misclassification of observed variables 
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Application to Teacher’s Burnout Data

Most of results are consistent with the hypothesized model

(from root to leaf)

• Discovered clusters and 

causal order of the latent 

variables:

We apply our algorithm to discover the underlying causal structure behind the Teacher’s 

Burnout. The data set contains 28 measured variables (See [Byrne, 2010] ).

Hypothesized model by experts [Byrne, 2010] 
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Conclusion and Further work
Conclusion

• Essential to learn hidden causal representation

• The whole latent variable causal model is identifiable under suitable 

assumptions

• GIN condition is a powerful extension of IN condition

Further work

✓ Develope an efficient algorithm that is able to recover the the LiNGLaM

with directed edges between observed variables in a principled way;

✓ Show the (partial) identifiability of the causal coefficients in the model 

and develop an estimation method for them.
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Thank you 

for your attention!


