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Abstract

This paper is concerned with data-driven unsupervised domain adaptation, where
it is unknown in advance how the joint distribution changes across domains, i.e.,
what factors or modules of the data distribution remain invariant or change across
domains. To develop an automated way of domain adaptation with multiple source
domains, we propose to use a graphical model as a compact way to encode the
change property of the joint distribution, which can be learned from data, and
then view domain adaptation as a problem of Bayesian inference on the graphical
models. Such a graphical model distinguishes between constant and varied modules
of the distribution and specifies the properties of the changes across domains, which
serves as prior knowledge of the changing modules for the purpose of deriving the
posterior of the target variable Y in the target domain. This provides an end-to-end
framework of domain adaptation, in which additional knowledge about how the
joint distribution changes, if available, can be directly incorporated to improve the
graphical representation. We discuss how causality-based domain adaptation can
be put under this umbrella. Experimental results on both synthetic and real data
demonstrate the efficacy of the proposed framework for domain adaptation. The
code is available at https://github.com/mgong2/DA_Infer.



Domain Adaptation

X — feature (covariate)
Y — label (target)
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Covariate shift
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Maximum Mean Discrepancy (MMD), optimal transport, adversarial loss...
* Why P 7& Py IP)S|X — IP)Y|X
* What if IPy|X 7£ IPYlX.

Shimodaira, Hidetoshi. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference. 2000.



Modularity

Intervention Meat cooked
N TN
Flame Meat on
/ \
Gas Level Igniter
/ \
Gas connected Gas knob
FIGURE 3

Soft intervention:

P(Flame|Gas Level, Igniter)

P(Gas Level|Gas Connected, Gas knob) is invariant
P(Meat cooked |Flame, Meat on) is invariant

https://plato.stanford.edu/entries/causal-models/ 5



Modularity

Intervention Meat cooked
N TN
Flame Meat on
Gas Level Igniter
/ \
Gas connected Gas knob
FIGURE 3

Soft intervention:

P(Flame|Gas Level, Igniter) changes

P(Gas Level | Gas Connected, Gas knob) is
P(Meat cooked |Flame, Meat on) is invariant

https://plato.stanford.edu/entries/causal-models/



Causal Model for DA

* Bridge between probability distributions

Pyy Py Piy... P

XY
* Independent causal mechanism
C — Cause @_@
E —FEffect
IP)C PE|C (causal mechanism)

Without confounder, Pc and IPg ¢ do not contain
information about each other.

Scholkopf, Bernhard, et al. "On causal and anticausal learning." arXiv preprint arXiv:1206.6471 (2012).



X — Y
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Y — X

Y is usually the cause of X (especially for classification)
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Zhang, Kun, et al. Domain adaptation under target and conditional shift. ICML13

Gong, Zhang, et al. Domain adaptation with conditional transferable components. ICML16



Y — X

Y is usually the cause of X (especially for classification)
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Gong, Zhang, et al. Domain adaptation with conditional transferable components. ICML16
Zhang, Kun, et al. Domain adaptation under target and conditional shift. ICML13 10



Y — X

Y is usually the cause of X (especially for classification)
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Covariate shift does
not hold !

Gong, Zhang, et al. Domain adaptation with conditional transferable components. ICML16
Zhang, Kun, et al. Domain adaptation under target and conditional shift. ICML13 11



Problems

* The causal graph and the invariance/changing causal
modules are assumed to be known

* The algorithms do not make full use of the causal
generative process

* Learning causal graphs from observational data is a
hard.

12



Inference on Graphical Models

6, by 6; 0, O

* Automated way to model change and invariance
properties in the joint distribution

* Factorize the joint distribution according to an augmented
directed acyclic graph (DAG)

* Formulate domain adaptation as a Bayesian inference
problem on the augmented DAG

Zhang, K*., Gong, M.*, et al. (2020). Domain Adaptation As a Problem of Inference on Graphical Models. NeurlPS 2020.
13



Augmented DAG

by 65 0

* DAG encodes conditional independence relations

* Encode distribution change by augmenting DAG with 0
* 0; are independent — independent change
* 6 follows a prior distribution P(8)

* Data generating process
* Generate 8 from P(0)
* Given H(i), sample data from the distribution in the i-th domain:

P(X,Y0%) = P(X1|0{”)P(Y|X1,60)) P(Xs|Y)P(X2|Y, X1, 057 ) P(X5|Y, X2, 057) x
P(X4)P(Xs|X4,05)P(X7|X3).
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Relation to Causal Graphs

ns

(a) The underlying data generating process
of Example 1. Y generates (causes) X, and
S denotes the selection variable (a data point
is included if and only if S = 1).
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(c) The generating process of Example 2. L is
a confounder; the mechanism of X changes
across domains, as indicated by 7x.
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(b) The augmented DAG representation for
Example 1 to explain how the data distribu-
tion changes across domains.
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(d) The augmented DAG representation for
Example 2 to explain how the data distribu-
tion changes across domains.
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Bayesian Inference
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Benefits of Bayesian Treatment

Shape of posterior of # 1 given Var(X)
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Y ~ N(0, 8y) X=Y+E

E ~ N(0,0y) X ~ N(0,05 + 6y)
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Graph Learning: Skeleton learning
and changing module detection

* Using Domain Index C as a surrogate variable and apply
Constraint-based search on C and the observed features
and labels.

* Detecting Changing Causal Modules
* Obtain the Skeleton of the graph
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Huang, B., Zhang, K., Zhang, J., Ramsey, J., Sanchez-Romero, R., Glymour, C., & Scholkopf, B.
(2020). Causal discovery from heterogeneous/nonstationary data. Journal of Machine Learning 18
Research, 21(89), 1-53.



Graph Learning: Determine edge
direction

* Independent changes in P(cause) and P(effect|cause)
01(C)  62(C)

Special cases: if C — Vi, — V;, since C — Vj, we known
e
e C = Vi, « V,if C L V; given a variable set excluding AN

e C = Vi = V,, if C 1L V; given a variable set including V

19



Approximate Inference

Latent variable conditional GAN
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Digits Adaptation

Table 3: Accuracy on the digits data. T: MNIST; M: MNIST-M; S: SVHN; D: SynthDigits.

weigh poolNN poolDANN Hard-Max Soft-Max poolNN_QOurs Infer

S+M+D/T 755 93.8 92.5 97.6 97.9 94.9 96.64
T+S+D/M 56.3 56.1 65.1 66.3 68.7 59.6 89.89
M+T+DJ/S 604 77.1 77.6 80.2 81.6 67.8 89.34
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Gong, M., Xu, Y., Li, C., Zhang, K., & Batmanghelich, K. (2019). Twin auxilary classifiers GAN. In Advances in neural
information processing systems (pp. 1330-1339). 21



WIFi Localization

where

e Localize mobile devices from
the WiFi signals.

 Transfer between different
time periods

22



WIFi Localization

DICA weigh LMP poolSVM Soft-Max ;;oolNN Infer

t2,t3 — t1 29.32(2.5) 43.71(3.02) 46.80(1.4) 40.25(1.6) 44.86(5.1) 42.88(1.6) 70.8(2.7)
t1,t3 > t2  24.5(3.6)  38.19(1.9) 39.11(2.1) 48.70(1.8) 44.95(4.4) 47.41(2.1) 84.5(2.9)
t1.t2 > t3  21.7(3.9)  36.03(1.85) 39.28(2.05) 40.46(1.4) 43.63(4.1) 41.00(1.8) 83.0(7.3)

23



Conclusion

 Augmented DAG encodes conditional independence
relations and distribution change properties, which are
sufficient for domain adaptation.

* Prediction in the target domain can be cast as Bayesian
inference on the augmented DAG.

* Practical implementation: Approximate Inference +
modeling conditional distributions using conditional GAN
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