

Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect

Kaihua Tang¹, Jianqiang Huang^{1,2}, Hanwang Zhang¹

¹Nanyang Technological University ²Damo Academy, Alibaba Group

Github: <u>https://github.com/KaihuaTang/Long-Tailed-Recognition.pytorch</u>

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Long-Tailed Distribution

What is long-tailed distribution?

• NLP \rightarrow Zipf's Law 20% 80% effort result • Economics \rightarrow Pareto Principle • Computer Vision 80% 20% effort result the data) **Head Classes** (Most **Tail Classes (Most of the categories)**

Long-Tailed Distribution

• Why we never heard about long tail problem in ML before?

MS-COCO (Object Detection & Instance Segmentation)

[1] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE CVPR. 2009.
[2] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." ECCV. Springer, Cham, 2014.

Long-Tailed Distribution

• Why we never heard about long tail problem in ML before?

It's because the dataset we saw has already been balanced by the preprocessing in the data collection stage.

Limitations of Balanced Datasets

• Question: What's the problem of balancing all the dataset?

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Re-balancing (Re-sampling/Re-weighting)

- The most common solutions:
 - Re-sampling
 - Re-weighting

Re-balancing (Re-sampling/Re-weighting)

- The most common solutions:
 - Re-sampling
 - Re-weighting

Two-Stage Re-balancing

- Drawbacks of conventional re-balancing:
 - Foreknowledge towards the data: knowing the future data distribution before learning
 - Under-fitting to the head
 - Over-fitting to the tail

Two-Stage Re-balancing

- The two-stage solutions for the above drawbacks:
 - Smoothly adapted bilateral-branch training [3]
 - Decoupled two-stage training [4]

[3] BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition, CVPR 2020[4] Decoupling Representation and Classifier for Long-Tailed Recognition, ICLR 2020

Back To The Two-Stage SOTAs

What's the problem of existing two-stage solutions?

They fail to explain the whys and wherefores of their solutions:

- why is the re-balanced classifier good but the re-balanced feature learning bad?
- why does the two-stage training significantly outperform the end-to-end one in long-tailed classification?

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Accumulative Momentum Effect

• The PyTorch implementation of SGD with momentum [8]:

$$v_t = \underbrace{\mu \cdot v_{t-1}}_{momentum} + g_t, \quad \theta_t = \theta_{t-1} - lr \cdot v_t,$$

• The moving average momentum will encode the data distribution, that creates a shortcut towards the head.

Accumulative Momentum Effect

SGD Momentum in **Balanced** Dataset

SGD Momentum in *Long-Tailed* Dataset

- Global Optima for All Categories
- Control Local Optima for Head Categories
- Momentum Direction in Balanced Data
- ---> Momentum Direction in Long-Tailed Data

Causal Effect of Momentum

The Proposed Causal Graph

- **X : Feature**
- **Y:** Prediction
- M: Momentum
- **D**: Projection on Head

Two Undesired Causal Effects of Momentum

Two Undesired Causal Effects of Momentum:

1. Backdoor shortcut

2. Indirect Mediator Effect

Confounder and backdoor shortcut

Backdoor shortcut:								
1.	A ↑	⇒	E ↑					
2.	A ↑	\Rightarrow	C ↑					
З.	E ↑	⇒?	C ↑					

backdoor Adjustment

Two Undesired Causal Effects of Momentum

Two Undesired Causal Effects of Momentum:

1. Backdoor shortcut

2. Indirect Mediator Effect

Mediator and indirect effect

M: medicine P: placebo C: cure

Indirect effect:						
	Р	⇒	М	1.		
	С	\Rightarrow	Р	2.		
	С	⇒?	М	З.		
	С С	⇒ ⇒?	P M	2. 3.		

Removing Placebo effect

M: medicine P: placebo C: cure

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

De-confound TDE Classifier

The definition of Total Direct Effect (TDE): $argmax_{i \in C} TDE(Y_i) = [Y_d = i | do(X = x)] - [Y_d = i | do(X = x_0)]$

The proposed classifier = De-confounded Training + TDE Inference

De-confounded training (An Open Question)

• Approximation of the backdoor adjustment:

$$P(Y = i | do(X = x))$$

= $\sum_{m} P(Y = i | X = x, M = m) P(M = m)$

Inverse Probability Weighting [8]:

- 1. Skip the prohibitive P(M)
- 2. Applying the propensity score to reduce the confounding effects [9]

[8] Judea Pearl, et.al., Causal inference in statistics: A primer. 2016.

[9] Austin, Peter C. "An introduction to propensity score methods for reducing the effects of confounding in observational studies." *Multivariate behavioral research*.

Inverse Probability Weighting

- 1. Skip the prohibitive P(M):
 - When there are infinite possible values of the confounder M, if we can only observe one (i, x, d) given one certain m, we can assume the number of possible m values is equal to the number of (i, x, d) samples, i.e., **the values of variables** (i, x, d) and m are one-to-one mapping, we can skip the P(M) when we condition on X and D.
 - Explanation of one-to-one mapping between (X, D) and M:
 - Fix the random seed of model initialization.
 - Fix the hyper-parameters like learning rate, weight decay, etc.
 - Momentum M is the accumulated gradient of all past learning samples, which contains all the information of dataset and sampling strategies, i.e., M has one-to-one mapping with backbone parameters that used to generate feature X (which contains head deviation D).
 - We also adopt multi-head K on feature X, which means K times sampling on (X, D) for better approximation to M.

•
$$\sum_{m} P(Y = i | X = x, M = m) P(M = m) \approx \frac{1}{K} \sum_{k=1}^{K} \tilde{P}(Y = i, X = x^{k}, D = d^{k})$$

Inverse Probability Weighting

- 2. Applying the propensity score to reduce the confounding effects:
 - Although skipping the prohibitive P(M) is important, it barely changes anything in our model.
 - Definition of the effect $(X \to Y)$: the prediction logits $f(x^k, d^k; w_i^k)$.
 - Definition of the propensity score: a normalizing term of the effect $g(x^k, d^k; w_i^k)$.

$$\tilde{P}(Y = i, X = x^k, D = d^k) \propto \tau \frac{f(x^k, d^k; w_i^k)}{g(x^k, d^k; w_i^k)}$$

De-confounded Training

• Logit of P(Y = i | do(X = x)) in the training phase is:

$$[Y = i | do(X = x)] = \frac{\tau}{K} \sum_{k=1}^{K} \frac{\left(w_{i}^{k}\right)^{T} (\ddot{x}^{k} + d^{k})}{\|x^{k}\| \cdot \|w_{i}^{k}\| + \gamma \|x^{k}\|}$$
$$= \frac{\tau}{K} \sum_{k=1}^{K} \frac{\left(w_{i}^{k}\right)^{T} x^{k}}{\left(\|w_{i}^{k}\| + \gamma\right) \|x^{k}\|}$$

- Why not use cosine classifier (i.e., $g(x^k, d^k; w_i^k) = ||w_i^k|| \cdot ||x^k||$)?
- The proposed normalization term $g(x^k, d^k; w_i^k) = ||w_i^k|| \cdot ||x^k|| + \gamma ||x^k||$

De-confound TDE Inference

The Counterfactual Bias (Placebo Effect)

$$[Y = i | do(X = x)] = \frac{\tau}{K} \sum_{k=1}^{K} \frac{(w_i^k)^T (\mathbf{x}^k + d^k)}{\|x^k\| + y\|x^k\|}$$

$$\vec{x}^k \Rightarrow x_0 \text{ (zero vector)}$$

$$[Y_d = i | do(X = x_0)] = \frac{\tau}{K} \sum_{k=1}^{K} \frac{(w_i^k)^T d^k}{(\|w_i^k\| + y)\|x^k\|}, \text{ where } d = \|d\| \cdot \hat{d} = \cos(x, \hat{d}) \cdot \|x\| \cdot \hat{d}$$

$$= \frac{\tau}{K} \sum_{k=1}^{K} \frac{\cos(x^k, \hat{d}^k) \cdot (w_i^k)^T \hat{d}^k}{(\|w_i^k\| + y)}$$

De-confound TDE Inference

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Advantages

The proposed de-confound TDE **simple**, **adaptive**, and **agnostic** to the prior statistics of the class distribution:

- 1. It doesn't introduce any additional stages or modules.
- 2. It can be applied to a variety of tasks, including but not limited to image classification, object detection, instance segmentation.
- 3. It doesn't rely on the accessibility of data distribution.

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Image Classification: ImageNet-LT

• Experiments on ImageNet-LT

Methods	Many-shot	Medium-shot	Few-shot	Overall
Focal Loss [†] [24]	64.3	37.1	8.2	43.7
OLTR [†] [8]	51.0	40.8	20.8	41.9
Decouple-OLTR [†] [8, 10]	59.9	45.8	27.6	48.7
Decouple-Joint [10]	65.9	37.5	7.7	44.4
Decouple-NCM [10]	56.6	45.3	28.1	47.3
Decouple-cRT [10]	61.8	46.2	27.4	49.6
Decouple- τ -norm [10]	59.1	46.9	30.7	49.4
Decouple-LWS [10]	60.2	47.2	30.3	49.9
Baseline	66.1	38.4	8.9	45.0
Cosine [†] [38, 39]	67.3	41.3	14.0	47.6
Capsule [†] [8, 42]	67.1	40.0	11.2	46.5
(Ours) De-confound	67.9	42.7	14.7	48.6
(Ours) Cosine-TDE	61.8	47.1	30.4	50.5
(Ours) Capsule-TDE	62.3	46.9	30.6	50.6
(Ours) De-confound-TDE	62.7	48.8	31.6	51.8

Cosine Classifier:

 $g(x^k, d^k; w_i^k) = \|x^k\| \cdot \|w_i^k\|$

Capsule Classifier:

$$g(x^{k}, d^{k}; w_{i}^{k}) = ||x^{k}|| \cdot ||w_{i}^{k}|| + ||w_{i}^{k}||$$

Image Classification: ImageNet-LT

• Does the improvement come from multi-head trick?

Methods	#heads K	Many-shot	Medium-shot	Few-shot	Overall
Cosine [†] [5, 6]	1	67.3	41.3	14.0	47.6
Cosine [†] [5, 6]	2	67.5	42.1	14.1	48.1
Capsule [†] [8, 10]	1	67.1	40.0	11.2	46.5
Capsule [†] [8, 10]	2	67.7	41.3	12.6	47.6
(Ours) De-confound	1	67.3	41.8	15.0	47.9
(Ours) De-confound	2	67.9	42.7	14.7	48.6
(Ours) Cosine-TDE	1	61.8	47.1	30.4	50.5
(Ours) Cosine-TDE	2	63.0	47.3	31.0	51.1
(Ours) Capsule-TDE	1	62.3	46.9	30.6	50.6
(Ours) Capsule-TDE	2	62.4	47.9	31.5	51.2
(Ours) De-confound-TDE	1	62.5	47.8	32.8	51.4
(Ours) De-confound-TDE	2	62.7	48.8	31.6	51.8

Image Classification: Long-Tailed CIFAR

• Will the improvement be consistent across different imbalance ratio?

Dataset	Long-	tailed C	CIFAR-100	Long-tailed CIFAR-10			
Imbalance ratio	100	50	10	100	50	10	
Focal Loss [28]	38.4	44.3	55.8	70.4	76.7	86.7	
Mixup [56]	39.5	45.0	58.0	73.1	77.8	87.1	
Class-balanced Loss [13]	39.6	45.2	58.0	74.6	79.3	87.1	
LDAM [12]	42.0	46.6	58.7	77.0	81.0	88.2	
BBN [10]	42.6	47.0	59.1	79.8	82.2	88.3	
(Ours) De-confound	40.5	46.2	58.9	71.7	77.8	86.8	
(Ours) De-confound-TDE	44.1	50.3	59.6	80.6	83.6	88.5	

Detection & Instance Segmentation

• Experiment Results on LVIS V0.5/V1.0 Val

Methods	LVIS Version	AP	AP_{50}	AP_{75}	AP_r	AP_c	AP_{f}	AP_{bbox}
Focal Loss [†] [28]	V0.5	21.1	32.1	22.6	3.2	21.1	28.3	22.6
(2019 Winner) EQL [17]	V0.5	24.9	37.9	26.7	10.3	27.3	27.8	27.9
Baseline	V0.5	22.6	33.5	24.4	2.5	23.0	30.2	24.3
Cosine [†] [50, 51]	V0.5	25.0	37.7	27.0	9.3	25.5	30.8	27.1
Capsule [†] [9, 54]	V0.5	25.4	37.8	27.4	8.5	26.4	31.0	27.1
(Ours) De-confound	V0.5	25.7	38.5	27.8	11.4	26.1	30.9	27.7
(Ours) Cosine-TDE	V0.5	28.1	42.6	30.2	20.8	28.7	30.3	30.6
(Ours) Capsule-TDE	V0.5	28.4	42.1	30.8	21.1	29.7	29.6	30.4
(Ours) De-confound-TDE	V0.5	28.4	43.0	30.6	22.1	29.0	30.3	31.0
Baseline	V1.0	21.8	32.7	23.2	1.1	20.9	31.9	23.9
(Ours) De-confound	V1.0	23.5	34.8	25.0	5.2	22.7	32.3	25.8
(Ours) De-confound-TDE	V1.0	27.1	40.1	28.7	16.0	26.9	32.1	30.0

Background-Exempted Inference

• Background-Exempted Inference (when there are good heads):

$$\underset{i \in C}{\operatorname{arg\,max}} \begin{cases} (1 - p_0) \cdot \frac{q_i}{1 - q_0} & i \neq 0 \\ p_0 & i = 0 \end{cases},$$

where i = 0 is the background category, $p_i = P(Y = i | do(X = x))$, q_i is the probability of original *TDE*.

Methods	BG-Exempted	AP	AP_{50}	AP_{75}	AP_r	AP_c	AP_f	AP_{bbox}
De-confound	X	25.7	38.5	27.8	11.4	26.1	30.9	27.7
De-confound-TDE	False	23.4	35.7	24.9	13.1	23.6	27.1	24.8
De-confound-TDE	True	28.4	43.0	30.6	22.1	29.0	30.3	31.0

Grad-cam Visualization on ImageNet-LT

What does our model see from images?

Thank You

Code Link

Paper Link

