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Photometric Stereo Basics
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3D imaging
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Laser range scanning
Bayon Digital Archive Project

Ikeuchi lab., UTokyo

3D modeling methods
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Multiview stereo
[Furukawa 10]

Reconstruction                 Ground truth

3D modeling methods
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Geometric approach Photometric approach

Gross shape

Detailed shape

Geometric vs. photometric approaches
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How can machine understand the shape from image intensities ?

Shape from image intensity
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Photometric 3D modeling
3D Scanning the President of the United States

P. Debevec et al., USC, 2014
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GelSight Microstructure 3D Scanner

E. Adelson et al., MIT, 2011

Photometric 3D modeling



Preparation 1: Surface normal
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A surface normal 𝒏 to a surface is 
a vector that is perpendicular to 
the tangent plane to that surface.

𝒏

𝒏 ∈ 𝒮2 ⊂ ℝ3, 𝒏 2 = 1

𝒏 =

𝑛𝑥
𝑛𝑦
𝑛𝑧
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• Amount of reflected light 
proportional to 𝒍𝑇𝒏 (= cos𝜃)

• Apparent brightness does not 
depend on the viewing angle.

−𝒍𝒍

𝒍 ∈ 𝒮2 ⊂ ℝ3, 𝒍 2 = 1

𝒏

𝜃

𝒍 =

𝑙𝑥
𝑙𝑦
𝑙𝑧

Preparation 2: Lambertian reflectance



Lambertian image formation model
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𝐼 ∝ 𝑒𝜌𝒍𝑇𝒏 = 𝑒𝜌 𝑙𝑥 𝑙𝑦 𝑙𝑧

𝑛𝑥
𝑛𝑦
𝑛𝑧

𝐼 ∈ ℝ+: Measured intensity for a pixel
𝑒 ∈ ℝ+: Light source intensity (or radiant intensity)
𝜌 ∈ ℝ+: Lambertian diffuse reflectance (or albedo)
𝒍 : 3-D unit light source vector
𝒏: 3-D unit surface normal vector

𝒏

𝒍

𝐼

𝑒

𝜌



Simplified Lambertian image formation model
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𝐼 ∝ 𝑒𝜌𝒍𝑇𝒏 = 𝑒𝜌 𝑙𝑥 𝑙𝑦 𝑙𝑧

𝑛𝑥
𝑛𝑦
𝑛𝑧

𝐼 = 𝜌𝒍𝑇𝒏



Photometric stereo
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Assuming 𝜌 = 1

j-th image under 
j-th lightings 𝑙𝑗, 

In total f images

𝐼 1, 𝐼 2, ⋯ , 𝐼 𝑓 = [𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧]

𝑙1𝑥 𝑙2𝑥
𝑙1𝑦 𝑙2𝑦 ⋯

𝑙1𝑧 𝑙2𝑧

𝑙𝑓𝑥
𝑙𝑓𝑦
𝑙𝑓𝑧

𝐼 1 = 𝒏 ∙ 𝒍1
𝐼 2 = 𝒏 ∙ 𝒍2

⋯
𝐼 𝑓 = 𝒏 ∙ 𝒍𝑓

For a pixel with
normal direction n

[Woodham 80]



Photometric stereo
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Matrix form

𝑝

𝑓

𝑰 =
𝑝

3

𝑵
𝑓

3𝑳

𝑰 = 𝑵𝑳

𝑵 = 𝑰𝑳+Least squares solution :

𝑝: Number of pixels

𝑓: Number of images



Photometric stereo: An example
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𝑰 = 𝑵 𝑳

Calibrated

To estimate

…

𝑵 = 𝑰𝑳+

Normal map

Captured



So far, limited to…
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• Lambertian reflectance

• Known, distant lighting



Generalization of photometric stereo
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• Lambertian reflectance

Outliers beyond Lambertian

General BRDF

• Known, distant lighting

Unknown distant lighting

Unknown general lighting

V L

?



Generalization of photometric stereo

19

General-1: Uncalibrated General-2: Robust General-3: General material

Specularity

Shadow

General-4:  General lighting

[CVPR 10]                                                   [ACCV 10]

[3DV 14, CVPR 18] [CVPR 19, ICCV 19]

Benchmark dataset

[CVPR 16, TPAMI19]

[CVPR 12, ECCV 12, TPAMI 14, 

ICCV 17, TIP 19, TPAMI19]

General-5: Uncalibrated + general material



Benchmark Datasets and Evaluation
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“DiLiGenT” photometric stereo datasets

Directional Lighting, General reflectance, with ground “Truth” shape

[Shi 16, 19] https://sites.google.com/site/photometricstereodata
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“DiLiGenT” photometric stereo datasets
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[Shi 16, 19] https://sites.google.com/site/photometricstereodata

Directional Lighting, General reflectance, with ground “Truth” shape



Data capture

• Point Grey Grasshopper + 50mm lens

• Resolution: 2448 x 2048

• Object size: 20cm

• Object to camera distance: 1.5m 

• 96 white LED in an 8 x 12 grid
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Lighting calibration

• Intensity
• Macbeth white balance board

• Direction
• From 3D positions of LED 

bulbs for higher accuracy

𝒍𝑗

𝑹𝑺𝑗 + 𝑻

𝑃𝑗

𝑝𝑗

𝐶

𝒏𝑃𝑗

𝑲−1𝑝𝑗

Light frame (transformed by (R, T))

Mirror sphere (3D)

Captured image
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“Ground truth” shapes

• 3D shape
• Scanner: Rexcan CS+ (res. 0.01mm)

• Registration: EzScan 7

• Hole filling: Autodesk Meshmixer 2.8

• Shape-image registration
• Mutual information method [Corsini 09]

• Meshlab + manual adjustment 

• Evaluation criteria
• Statistics of angular error (degree)

• Mean, median, min, max, 1st quartile, 3rd quartile
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BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST Average

M
a
in

 d
a
ta

s
e
t

N
o

n
-L

a
m

b
e

rt
ia

n

BASELINE 4.10 8.41 8.89 8.39 14.65 14.92 18.50 19.80 25.60 30.62 15.39

WG10 2.06 6.73 7.18 6.50 13.12 10.91 15.70 15.39 25.89 30.01 13.35

IW14 2.54 7.21 7.74 7.32 14.09 11.11 16.25 16.17 25.70 29.26 13.74

GC10 3.21 8.22 8.53 6.62 7.90 14.85 14.22 19.07 9.55 27.84 12.00

AZ08 2.71 6.53 7.23 5.96 11.03 12.54 13.93 14.17 21.48 30.50 12.61

HM10 3.55 8.40 10.85 11.48 16.37 13.05 14.89 16.82 14.95 21.79 13.22

ST12 13.58 12.34 10.37 19.44 9.84 18.37 17.80 17.17 7.62 19.30 14.58

ST14 1.74 6.12 6.51 6.12 8.78 10.60 10.09 13.63 13.93 25.44 10.30

IA14 3.34 6.74 6.64 7.11 8.77 10.47 9.71 14.19 13.05 25.95 10.60

U
n

c
a

lib
ra

te
d

AM07 7.27 31.45 18.37 16.81 49.16 32.81 46.54 53.65 54.72 61.70 37.25

SM10 8.90 19.84 16.68 11.98 50.68 15.54 48.79 26.93 22.73 73.86 29.59

PF14 4.77 9.54 9.51 9.07 15.90 14.92 29.93 24.18 19.53 29.21 16.66

WT13 4.39 36.55 9.39 6.42 14.52 13.19 20.57 58.96 19.75 55.51 23.92

Opt. A 3.37 7.50 8.06 8.13 12.80 13.64 15.12 18.94 16.72 27.14 13.14

Opt. G 4.72 8.27 8.49 8.32 14.24 14.29 17.30 20.36 17.98 28.05 14.20

LM13 22.43 25.01 32.82 15.44 20.57 25.76 29.16 48.16 22.53 34.45 27.63



Photometric Stereo Meets Deep Learning
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DPSN

PS-FCN

CNN-PS

SDPS

LMPS

SPLINE-Net

Shadows

Photometric stereo + Deep learning
Fixed Directions 

of Lights

Uncalibrated 
Lights

Small Number 
of Lights

Arbitrary Lights

Pixel-
wisely

Global

Optimal
Directions

Arbitrary
Directions

IRPS
Unsupervised 

Learning

28

GPS-Net

Features

Attention-PSN
Adaptive 

Loss

BRDFs



[ICCV 17 Workshop] DPSN
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Photometric Stereo

Research background

Normal mapMeasurements

𝑚1

𝑚2

𝑚3

𝑚4

= 𝑓

𝑳𝟏
𝑳𝟐
𝑳𝟑
𝑳𝟒

,

𝑛𝑥
𝑛𝑦
𝑛𝑧

Image formation

𝑓 : reflectance model
𝒎 : measurement vector
𝑳 : light source direction
𝒏 : normal vector

𝒎 = 𝑓(𝑳, 𝒏)

𝑳1

𝑳2

𝑳3

𝑳4

30



Parametric reflectance model

Motivations

Lambertian model
(Ideal diffuse reflection)

Metal rough surface
31

only accurate for a limited class of materials



Local illumination model

Motivations

Model direct illumination only

Global illumination effects cannot be modeled

Cast shadow

Parametric reflectance model

only accurate for a limited class of materials

Lambertian model
(Ideal diffuse reflection)

Metal rough surface
32



Local illumination modelParametric reflectance model

only accurate for a limited class of materials

Motivations

Lambertian model
(Ideal diffuse reflection)

Model direct illumination only

Metal rough surface

Case shadow

Global illumination effects cannot be modeled

• Model the mapping from measurements to surface normal directly using Deep Neural 
Network (DNN)

• DNN can express more flexible reflection phenomenon compared to existing models 
designed based on physical phenomenon

Normal mapMeasurements

Deep Neural Network

∙∙∙

33



・
・
・

Proposed method

Reflectance model with Deep Neural Network

• mappings from measurement (𝒎 = 𝑚1, 𝑚2, … ,𝑚𝐿
T) to surface normal (𝒏 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧

T
)

・
・
・

・
・
・

・・・

𝑛𝑥

𝑛𝑦

𝑛𝑧

Shadow layer Dense layers

𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝐿

・
・
・

𝐿 images

34



・
・
・

Proposed method

Reflectance model with Deep Neural Network

• mappings from measurement (𝒎 = 𝑚1, 𝑚2, … ,𝑚𝐿
T) to surface normal (𝒏 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧

T
)

・
・
・

・
・
・

・・・

𝑛𝑥

𝑛𝑦

𝑛𝑧

Shadow layer Dense layers

Dropout

𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝐿

・
・
・Simulating cast shadow

𝐿 images

35



・
・
・

Proposed method

Reflectance model with Deep Neural Network

• mappings from measurement (𝒎 = 𝑚1, 𝑚2, … ,𝑚𝐿
T) to surface normal (𝒏 = 𝑛𝑥, 𝑛𝑦, 𝑛𝑧

T
)

・
・
・

・
・
・

・・・

𝑛𝑥

𝑛𝑦

𝑛𝑧

Shadow layer Dense layers

Dropout

𝑚1

𝑚2

𝑚3

𝑚4

𝑚𝐿

・
・
・

Loss function : 𝒏 − ෝ𝒏 2
2

𝐿 images

How to prepare training data 36



Training data
Rendering synthetic images

• Rendering with database (MERL BRDF database), which stores reflectance functions of 100 
different real-world materials [Matusik 03]

37



Training data
Rendering synthetic images

• Rendering with database (MERL BRDF database), which stores reflectance functions of 100 
different real-world materials [Matusik 03]

Given normal map
38



Effectiveness of the shadow layer

0 [deg.]

-32 (better)

32 (worse) 

harvestgobletball pot2

The difference map of error map between “Proposed” and “Proposed W/ SL”
Blue pixels：The estimation accuracy is improved by shadow layer
Red pixels ：The estimation accuracy is NOT improved by shadow layer

The accuracy is improving.

39



ball cat pot1 bear buddha cow goblet harvest pot2 reading AVG.

Proposed 3.44 7.21 7.90 7.20 13.30 8.49 12.35 16.81 8.80 17.47 10.30 

Proposed W/ SL 2.02 6.54 7.05 6.31 12.68 8.01 11.28 16.86 7.86 15.51 9.41

ST14 (Shi+, PAMI, 2014) 1.74 6.12 6.51 6.12 10.60 13.93 10.09 25.44 8.78 13.63 10.30 

IA14 (Ikehata+, CVPR, 2014) 3.34 6.74 6.64 7.11 10.47 13.05 9.71 25.95 8.77 14.19 10.60 

WG10 (Wu+, ACCV, 2010) 2.06 6.73 7.18 6.50 10.91 25.89 15.70 30.01 13.12 15.39 13.35 

AZ08 (Alldrin+, CVPR, 2008) 2.71 6.53 7.23 5.96 12.54 21.48 13.93 30.50 11.03 14.17 12.61 

HM10 (Higo+, CVPR, 2010) 3.55 8.40 10.85 11.48 13.05 14.95 14.89 21.79 16.37 16.82 13.22 

IW12 (Ikehata+, CVPR, 2012) 2.54 7.21 7.74 7.32 11.11 25.70 16.25 29.26 14.09 16.17 13.74 

ST12 (Shi+, ECCV, 2012) 13.58 12.34 10.37 19.44 18.37 7.62 17.80 19.30 9.84 17.17 14.58 

GC10 (Goldman+, PAMI, 2010) 3.21 8.22 8.53 6.62 14.85 9.55 14.22 27.84 7.90 19.07 12.00 

BASELINE (L2) 4.10 8.41 8.89 8.39 14.92 25.60 18.50 30.62 14.65 19.80 15.39 

Benchmark results using “DiLiGenT”

40



[ICML 18] IRPS

41



Challenges

• Complex unknown non-linearity: Real objects have various reflectance 
properties (BRDFs) that are complex and unknown

• Lack of training data: Deeply learning for complex relations of surface 
normal and BRDFs is promising, but accurately measuring ground truth 
of surface normal and BRDFs is difficult

• Permutation invariance: Permuting input images should not change the 
resulting surface normals

42



Key ideas

• Inverse rendering 

• Reconstruction loss

• Unsupervised

43



Network architecture

44



Network architecture

45



Benchmark results using “DiLiGenT”

46



[ECCV 18] PS-FCN

47



Overview of PS-FCN

, 𝑙𝜃1 , 𝑙𝜃2
, 𝑙𝜃𝑛… PS-FCN

Given an arbitrary number of images and their associated light directions as input, 
PS-FCN estimates a normal map of the object in a fast feed-forward pass.

Advantages:
• Does not depend on a pre-defined set of light directions
• Can handle input images in an order-agnostic manner 48
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.

32x32

, 𝑙𝜃𝑛

32x32

, 𝑙𝜃1

Deconv

Conv (strde-2) + LReLUConv + LReLU

𝑙𝜃 Lighting direction

Normal Regression Network

Conv8
128x3x3

Conv9
128x3x3

Conv10
64x3x3

Conv11
3x3x3

L2-Norm

Shared-weight Feature Extractor

.

.

.

Conv1
64x3x3

Conv2
128x3x3

Conv3
128x3x3

Conv4
256x3x3

Conv5
256x3x3

Conv6
128x3x3

Conv7
128x3x3

Max-pooling

Fusion Layer

• A Shared-weight Feature Extractor 

PS-FCN consists of three components:

• A Fusion Layer
• A Normal Regression Network

Network architecture

49
𝐿𝑛𝑜𝑟𝑚𝑎𝑙 =

1

𝐻𝑊
σ𝑖,𝑗(1 − 𝑁𝑖𝑗 ⋅ ෩𝑁𝑖𝑗)

Loss function:



Max-pooing for multi-feature fusion 

50

• Order-agnostic operation (compared with RNNs)
• Can fused an arbitrary number of features into a single feature
• Can extract the most salient information from all the features

0.5

.

.

.

0.3 0

0.20.40.5

0.30.7 0.4

0.1 0.3 0.4

0.500.7

0.90.2 0.9

Feature	2

0.5

.

.

.

0.3 0.5

0.50.40.5

0.90.8 0.4

0.8 0.7 0.7

0.60.70.9

0.90.2 0.9

Max-pooling

0.45

.

.

.

0.25 0.25

0.350.20.4

0.60.75 0.25

0.45 0.5 0.55

0.550.350.8

0.70.2 0.65

Average-pooling

0.4

.

.

.

0.2 0.5

0.500.3

0.90.8 0.1

0.8 0.7 0.7

0.60.70.9

0.50.2 0.4

Feature	1

N
	c
h
an
n
e
ls

Inputs

Max-pooling is well-suited for this task:



.

.

.

32x32

, 𝑙𝜃𝑛

32x32

, 𝑙𝜃1

Shared-weight Feature Extractor

.

.

.

Conv1
64x3x3

Conv2
128x3x3

Conv3
128x3x3

Conv4
256x3x3

Conv5
256x3x3

Conv6
128x3x3

Conv7
128x3x3

Max-pooling

Fusion Layer

?

What is encoded in the fused feature?
51

Feature visualization



• Different regions with similar normal directions are fired in different channels
• Each channel can be interpreted as the probability of the normal belonging to a 

certain direction 52

Visualization for the fused features



• 100 BRDFs from MERL dataset [Matusik 03]

• Rendered with the physically based raytracer Mitsuba
• Trained only on the synthetic data, PS-FCN generalizes well on real data

53

Two synthetic training datasets
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Benchmark results using “DiLiGenT”



[ECCV 18] CNN-PS

55



Observation map (per-pixel)

• Find an easy-to-learn representation

Definition of an observation map (𝛼 is normalizing factor, L is light intensity)  

56



Training dataset

• Cycles renderer in Blender

• A a set of 3-D model, BSDF 
parameter maps (Disney’s 
Principled BSDS model), and 
lighting configuration

• Generate observation map 
pixelwisely

57



Disney’s principled BSDS model

• Intuitive rather than physical 
parameters should be used 

• As few parameters as possible

• Parameters should be zero to one 
over their plausible range

• Parameters should be allowed to 
be pushed beyond their plausible 
range where it makes sense

• All combinations of parameters 
should be as robust and plausible 
as possible

58



Normal prediction

Observation map

59



Benchmark results using “DiLiGenT”
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Results: CyclePS test dataset

61



[CVPR 19] SDPS

62



Motivation

63

• Recent learning based methods for PS often assume known light directions 
• DPSN

• IRPS

• CNN-PS

• PS-FCN

• The performance of the existing learning based method for UPS is far from satisfactory
• PS-FCN + uncalibrated setting

Single-stage 
method

UPS-FCN

GT Ours63



• Directional lightings are much easier to estimate than surface normals

• Take advantage of the intermediate supervision (more interpretable)

• The estimated lightings can be utilized by existing calibrated methods

Stage1

Two-stage method:Single-stage method:

Model

Input Images Normal Input Images NormalLightings

Advantages of the proposed two-stage method:

Stage2

Main idea of SDPS-Net

64



• Stage 1: Lighting Calibration Network (LCNet) for lighting estimation

SDPS-Net consists of two stages:

• Stage 2: Normal Estimation Network (NENet) for normal estimation

The proposed two-stage framework



Loss function: 

• : azimuth classification loss
• : elevation classification loss
• : light intensity classification loss

z

x

y

P

φ
✓

y

zz

xx

Discretization of 
lighting space:

Stage 1: Lighting calibration network



Loss function:

• Cosine similarity loss

• Our framework can handle an arbitrary number of images in an order agnostic manner.

Stage 2: Normal estimation network



Synthetic training dataset [Chen 18] 

• Cast-shadow and inter-reflection are considered using Mitsuba.  

• 100 measured BRDFs from MERL dataset

68



Benchmark results using “DiLiGenT”

• Our method achieves state-of-the-art results (value the lower the better)
• The proposed LCNet can be integrated with the previous calibrated methods 69



Qualitative results on light stage data gallery

O
b

je
ct

O
u

rs
U

P
S-

FC
N
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[CVPR 19] LMPS

71



Main IdeaMain idea

72



• Cast-shadows are consistent patterns with a 
relatively sharp and straight boundary

• Randomly select two sides of the map, and 
randomly picks a point on each side

Occlusion layer

Main idea

73



• Select the most relevant 
illuminant directions at input

• Fixed after training

Sparse connection table Loss functions

Main idea

74



Effectiveness of occlusion layer

• Compared with random zeroing in DPSN

75



*10 selected lights

Light-Config Proposed PS-FCN CNN-PS IW12 LS

Random 
(10 trials)

10.51 14.34 16.37 17.31

Selected by 
Proposed 
method

11.35 13.02 15.83 17.12

Optimal 
[Drbohlav 05]

8.73 13.35 15.50 16.57

10.02

Benchmark results using “DiLiGenT”
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[ICCV 19] SPLINE-Net

77



Key idea

78

• Sparse photometric 
stereo
• Fixed number of inputs 

with arbitrary lightings

• Basic idea
• Spatial continuity: 

dense interpolation

• Isotropy of BRDFs: 
physics constraint

Random positions of valid 
pixels in observation maps

Inputs Surface normals

Lighting interpolation 
guides normal estimation

Inputs Surface normals

Symmetric pattern in 
observation maps

Inputs Surface normals



Isotropic BRDFs in observation maps

79

• 𝜌 𝐧T𝐥, 𝐧T𝐯, 𝐯T𝐥

Loss functions of symmetric

𝑟(∙) is a mirror function



Global illumination effects in observation maps

80

• Inter-reflections

• Cast shadows

Loss functions of asymmetric

𝑝(∙) is a max pooling operation



Framework

Conv. layers (stride=1,2) Instance Norm. Deconv. layer (stride=2) ReLU SigmoidDropout Avg. Pooling FlattenDense Normalize

𝐧𝑔𝑡
𝐯

…

Down-sampling Residual

Block

Up-sampling

Lighting Interpolation Network Reconstruction Loss

Symmetric Loss

and

Asymmetric Loss

𝐒 𝐃 𝐃𝑔𝑡
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Framework

…

Dense Block 

Down-sampling Residual

Block

Up-sampling

Normal Estimation Network

𝐧

Conv. layers (stride=1,2) Instance Norm. Deconv. layer (stride=2) ReLU SigmoidDropout Avg. Pooling FlattenDense Normalize

Reconstruction Loss

Symmetric Loss

and

Asymmetric Loss

𝐧𝑔𝑡

𝐒 𝐃 𝐃𝑔𝑡

Dense Block 

𝐯 𝐯
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Framework

…

Dense Block 

Down-sampling Residual

Block

Up-sampling

Lighting Interpolation Network

Normal Estimation Network

𝐧

Conv. layers (stride=1,2) Instance Norm. Deconv. layer (stride=2) ReLU SigmoidDropout Avg. Pooling FlattenDense Normalize

Reconstruction Loss

Reconstruction Loss

Symmetric Loss

and

Asymmetric Loss

𝐧𝑔𝑡

𝐒 𝐃 𝐃𝑔𝑡

Dense Block 

𝐯 𝐯

83



Noise in sparse observation maps (inputs)

1.42° 8.14° 26.59° 48.31°1 42 3

Input

Ground 

truth

1

4

2

3

Normal map

• More brighter pixels, less shadows
• More ‘valid’ pixels, more accurate results

84



Generated dense observation maps

Inputs              Nets w/o loss       Nets with ℒ𝑠 SPLINE-Net         Ground truth

• Symmetric loss and asymmetric loss help generate more accurate dense 
observation maps

85



Benchmark results using Cycle-PS dataset
*10 selected lights, 100 random trials

86



Benchmark results using “DiLiGenT” 
*10 selected lights, 100 random trials

87
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[NeurIPS 20] GPS-Net



Motivation 

• Aggregate the unstructured inputs into graphs.

• Convolve the  topologically inconsistent graphs using our Structure-aware Graph 
Convolution filters (SGC filters).

• Regress a high-resolution normal map using our multi-branch & multi-scale Normal 
Regression Network (NR-Net).
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SGC Filters NR-Net

Graphs
Unstructured inputs

Combine per-pixel and all-pixel operations to efficiently infer the surface
normals under both sparse and dense lightings.

Key ideas

H×W
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Benchmark results using “DiLiGenT”
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Comparison of different methods on the DiLiGenT benchmark with diverse input numbers.
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[IJCAI 20] Attention-PSN



• Error and blurry in high-frequency regions, such as crinkles and edges:

• The Euclidean-based loss functions hardly constrain the high-frequency
representations due to the sampling.

• These areas are important!

Motivation
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Observation                GT                        DPSN                       IRPS



• Put more emphasis on those areas with high-frequency information.

Attention-PSN
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Extractor
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pooling
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map

Prediction

1.Normal recovery network
output: normal

2.Attention network
output: per-pixel weights (attention map)

3. Attention-weighted loss learned
in a self-supervise manner for each
pixel.

Per-pixel manner:

𝑝𝑖 is the value in attention map (position i)



Benchmark results using “DiLiGenT”
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(IRPS)

Comparison of different methods on the DiLiGenT benchmark. All methods are evaluated with 96 images.

Observations & Attention maps



Open problems for data-driven methods

• When input light becomes sparse, data-driven methods does 
not outperform baseline (L2) for diffuse datasets 
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Open problems for dataset

• For more delicate structures, a 
scanned shape to too “blurred” to 
evaluate photometric stereo
• Integrating scanned shapes and 

photometric stereo for very high quality 
3D modeling

Image                   Scanned     Photometric stereo

• “DiLiGenT” only provides the “ground 
truth” of scanned shape
• How to measure the true surface normal 

precisely 
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Another photometric 3D: Shape from Polarization (SfP)
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Input             → Output

Polarized 3D 
[ICCV 15, IJCV 17]

Deep SfP
[ECCV 20]



Recent reference books

99



Thank You!                                     Q&A
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