

Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation

*Jianyuan Wang¹, *Yiran Zhong^{1,5}, Yuchao Dai², Kaihao Zhang^{1,4}, Pan Ji³, Hongdong Li^{1,5}

¹Australian National University, ²Northwestern Polytechnical University, ³NEC Labs America, ⁴Tencent AI Lab, ⁵ACRV

IEURAL INFORMATION Displacement-Invariant Cost Learning

Volumetric Approach

Our Method

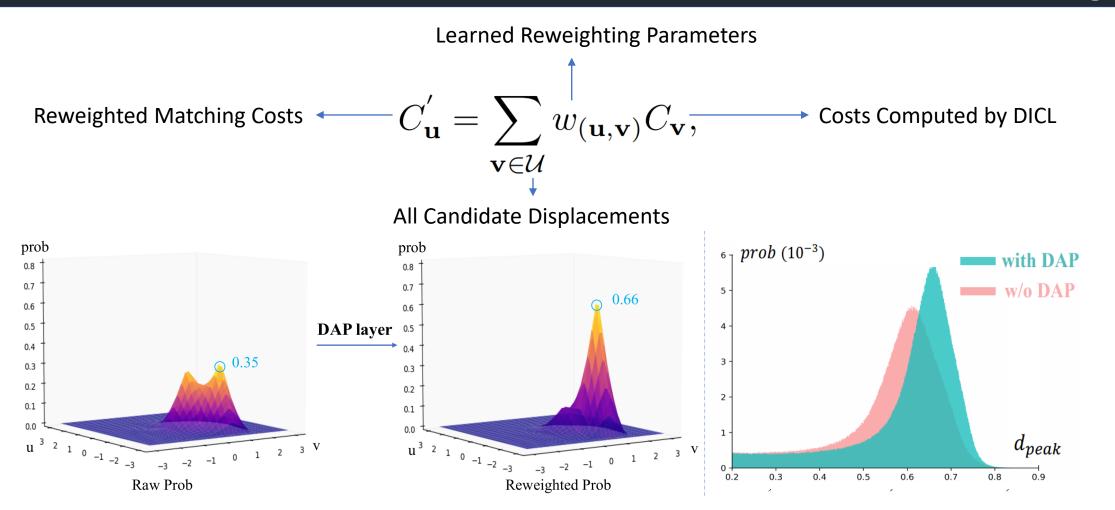
Table 1. Per Layer Analysis of Processing a 5D feature Volume ($K \times U \times V \times \lambda H \times \lambda W$)

Methods	Kernel	Params	Ratio	Theoretical Inference Memory	ratio
4D convolutions	(K, K, 3, 3, 3, 3)	81 <i>K</i> ²	9 <i>K</i>	$K \times U \times V \times \lambda H \times \lambda W$	$U \times V$
Ours	(<i>K</i> , 3,3)	9 <i>K</i>	1	$K imes \lambda H imes \lambda W$	1

Displacement-Invariant Cost Learning

Та	ble 2. Ablation stu	ıdy on different	cost computation	n metrics.	
Method	Chairs	KITTI-	15 train	Sintel-tra	in (EPE)
method	EPE	EPE	Fl-all	Clean	Final
Dot Product Cosine Similarity 3-Layer MLP DICL	1.86 1.84 1.76 1.33	10.39 10.45 9.83 8.78	31.1 30.2 28.9 23.8	2.57 2.55 2.45 2.11	4.06 4.03 3.98 3.85
(a) Dot Product	(b) Cos Simi	larity	(c) MLP		(d) DICL
prob 10^{-0} 1	prob 10^{-0} 0.4^{-0}	prob 10 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.		prob 10 10 10 10 10 10 10 10 10 10	

Figure 1. Qualitative Example of the Displacement Probability Distribution with Different Kinds of Matching Costs. The intersection of two yellow lines shows the ground truth location.


Displacement Aware Projection

Tencent腾讯

 $(\bigcirc$

INFORMA

OCESSING S

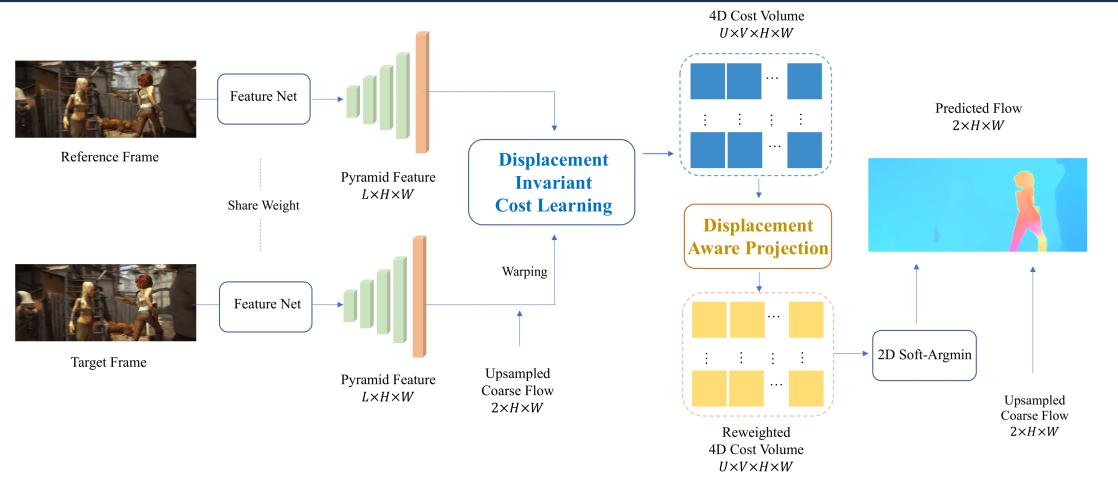
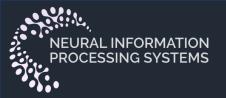


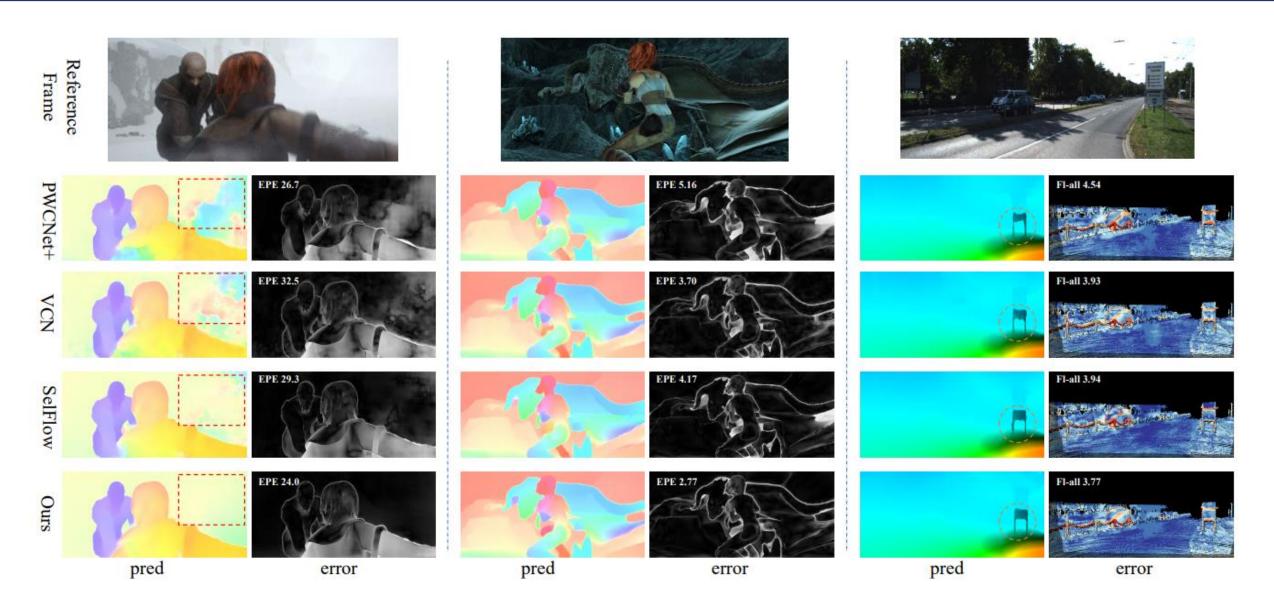
Figure 2. The left column compares an example pixel's displacement probability, before and after using DAP layer. The right column shows the histogram of the d_{peak} distribution with and without the DAP layer. d_{peak} represents the difference value between the highest and the second probability among the displacements.

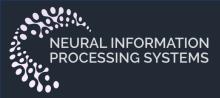
IEURAL INFORMATION ROCESSING SYSTEMS

Figure 3. The feature net outputs features at five pyramid levels. For each level, our displacement-invariant cost learning module compares the reference feature map and the target feature map at each displacement and builds a 4D cost volume. Our displacement-aware projection layer reweights the learned cost volume to make it unimodal. A 2D soft-argmin layer projects the cost volume to optical flow



Benchmark Results


Table 3. Quantitative Results on KITTI 2015 and Sintel Datasets. The symbol 'C+T' indicates a model pre-trained on the Chair and Things datasets while '+K/S' means further fine-tuned on the KITTI or Sintel dataset. Parentheses means the results are reported on its training dataset.


	Method	Time	K-15	train	K-15 test	S-train	(EPE)	S-test	(EPE)
		(s)	EPE	Fl-all	Fl-all	Clean	Final	Clean	Final
	EpicFlow [27]	15.00	-	-	26.29	-	-	4.12	6.29
	DCFlow [35]	8.60	-	15.1	14.86	-	-	3.54	5.12
	FlowNet2 [12]	0.12	10.08	30.0	-	2.02	3.54	3.96	6.02
	PWCNet [29]	0.03	10.35	33.7	-	2.55	3.93	-	-
	LiteFlowNet [9]	0.09	10.39	28.5	-	2.48	4.04	-	-
C+T	LiteFlowNet2 [10]	0.04	8.97	25.9	-	2.24	3.78	-	-
	HD ³ F [39]	0.08	13.17	24.0	-	3.84	8.77	-	-
	VCN [37]	0.18	8.36	25.1	-	2.21	3.62	-	-
	Ours-w/o DAP	0.08	8.78	23.8	-	2.11	3.85	-	-
	Ours	0.08	8.70	23.6	-	1.94	3.77	-	-
	FlowNet2 [12]	0.12	(2.30)	(8.6)	11.48	(1.45)	(2.01)	4.16	5.74
	PWCNet+ [30]	0.03	(1.50)	(5.3)	7.72	(1.71)	(2.34)	3.45	4.60
	LiteFlowNet [9]	0.09	(1.62)	(5.6)	9.38	(1.35)	(1.78)	4.54	5.38
	LiteFlowNet2 [10]	0.04	(1.47)	(4.8)	7.74	(1.30)	(1.62)	3.45	4.90
+K/S	IRR-PWC [11]	0.21	(1.63)	(5.3)	7.65	(1.92)	(2.51)	3.84	4.58
	HD ³ F [39]	0.08	(1.31)	(4.1)	6.55	(1.87)	(1.17)	4.79	4.67
	SelFlow [20]	0.09	(1.18)	-	8.42	(1.68)	(1.77)	3.74	4.26
	VCN [37]	0.18	(1.16)	(4.1)	6.30	(1.66)	(2.24)	2.81	4.40
	Ours-w/o DAP	0.08	(1.09)	(3.8)	-	(1.30)	(1.72)	-	-
	Ours	0.08	(1.02)	(3.6)	6.31	(1.11)	(1.60)	2.12	3.44

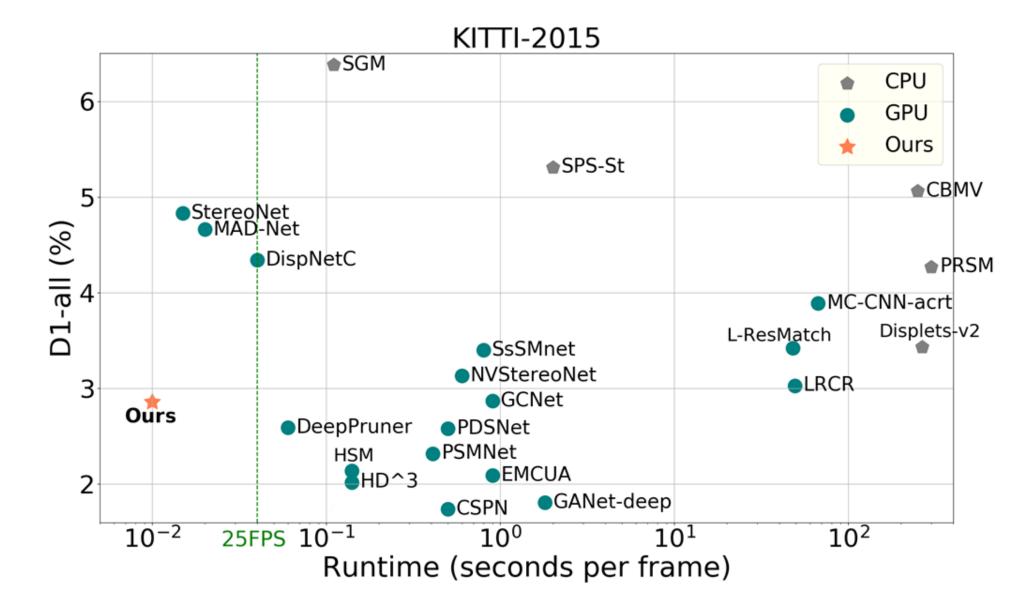
Benchmark Results

Adversarial Attack

Table 4. Performance Against Adversarial Attacks. The patch size used by the adversarial attack is indicated by pixels, e.g., 25×25 . The column 'Diff' denotes the relative EPE difference after attacks. The results are reported on the KITTI 2015 training set

	Unattacked	25	x25	51	x51	102	x102	153	x153
Network	EPE	EPE	Diff	EPE	Diff	EPE	Diff	EPE	Diff
FlowNetC [3]	14.56	29.07	+14.51	40.27	+25.51	82.41	+67.85	95.32	+80.76
FlowNet2 [4]	11.90	17.04	+5.14	24.42	+12.52	38.57	+26.67	59.58	+47.68
SpyNet [8]	20.26	20.59	+0.33	21.00	+0.74	21.22	+0.96	21.00	+0.74
PWC-Net [10]	11.03	11.37	+0.34	11.50	+0.47	11.86	+0.83	12.52	+1.49
Back2Future [5]	17.49	18.04	+0.55	18.24	+0.75	18.73	+1.24	18.43	+0.94
Ours	8.98	9.17	+0.19	9.30	+0.32	9.52	+0.54	9.61	+0.63

Attacked Reference Frame


Unattacked Flow

Attacked Flow

NEURAL INFORMATION PROCESSING SYSTEMS

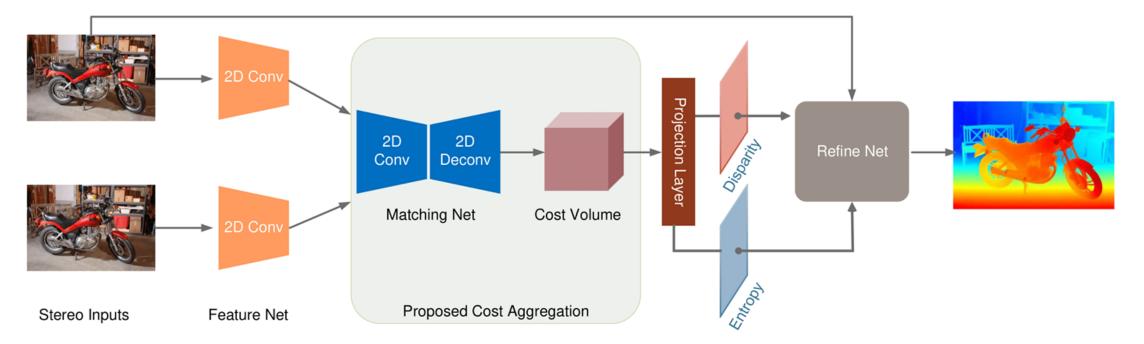


Figure 4. Overall Architecture of Our Stereo Matching Extension

Feature Net: 8 layers with spatial pyramid pooling. Matching Net: 17 layers with skip connected U-net. Projection Layer:

URAL INFORMATION OCESSING SYSTEMS

> Project cost volume to disparity map Compute entropy map from cost volume

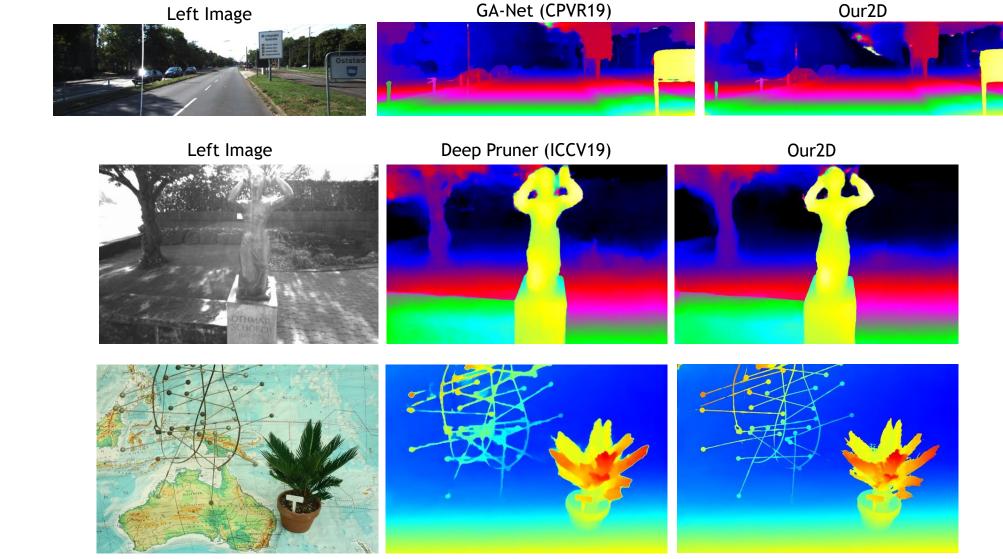
Refine Net: take left image, entropy map and disparity map as input.

Loss Functions: smooth *l*_1 loss on *d*_coarse and *d*_refine

Table 5. Benchmark Quantitative Results.

	Res	ults on I	KITTI 2015	test s	set. E	sold 1	ndica	tes th	e best,
whil	le underli	ine indic	ates the second	ond b	est.				
				Nor	n-occ	(%)	A	All (%)
]	Method	Runtime(s)	bg	fg	all	bg	fg	all
	MC-CN	NN [29]	67.00	2.48	7.64	3.33	2.89	8.88	3.89
	SGM	net [23]	67.00	2.23	7.44	3.09	2.66	8.64	3.66
	PDS	net [28]	0.50	2.09	3.68	2.36	2.29	4.05	2.58
	CI	RL [18]	0.47	2.32	3.68	2.36	2.48	3.59	2.67
S	SDR	Net [1]	0.23	1.57	4.58	2.06	1.72	4.95	2.26
) FI	PSN	Inet [2]	0.41	1.71	4.31	2.14	1.86	4.62	2.32
, 10	GC-N	Net [11]	0.90	2.02	3.12	2.45	2.21	6.16	2.87
Below 10 FPS	M2S_CS	SPN [4]	0.50	1.40	2.67	1.61	1.51	2.88	1.74
Be	HS	SM [31]	0.15	1.63	3.40	1.92	1.80	3.85	2.14
	EMCU	JA [17]	0.90	1.50	3.88	1.90	1.66	4.27	2.09
	GA-Net-	15 [34]	0.36	1.40	3.37	1.73	1.55	3.82	1.93
DI	Pruner_B	est [24]	0.18	1.71	3.18	1.95	1.87	3.56	2.15
S	Stereol	Net [12]	0.02	-	-	-	4.30	7.45	4.83
) FI	DN-	CSS [9]	0.07	2.23	4.96	2.68	2.39	5.71	2.94
010	MAD-1	Net [27]	0.02	3.45	8.41	4.27	3.75	9.2	4.66
Above 10 FPS	DispN <u>e</u>	etC [15]	0.04	4.11	3.72	4.05	4.32	4.41	4.34
Ab	- Î	Our2D	0.01	2.12	3.88	2.42	2.51	4.62	2.86

Results on KITTI 2015 test set. Bold indicates the best,
derline indicates the second best.Results on ETH3D test dataset. Bold indicates the best,
while underline indicates the second best.


Methods	time(s)	EPE	rmse	bad-4.0	bad-2.0	bad-1.0	A99
HSM [31]	0.14	0.29	0.67	0.68	1.48	4.25	3.25
SDRNet [1]	0.15	0.34	0.71	0.50	1.66	6.02	3.07
iResNet [1]	0.20	0.25	0.59	0.34	1.20	4.04	2.70
DPruner [24]	0.16	0.28	0.58	0.34	1.04	3.82	2.61
PSMnet [2]	0.41	0.36	0.75	0.54	1.31	5.41	3.38
DN-CSS [9]	0.07	0.24	0.56	0.38	0.96	3.00	2.89
Our2D	0.01	<u>0.32</u>	<u>0.63</u>	<u>0.53</u>	<u>1.25</u>	<u>4.82</u>	2.79

Results on Middlebury 2014 *test* **dataset**. Bold indicates the best, while underline indicates the second best.

Methods	time(s)	EPE	rmse	bad-4.0	bad-2.0	bad-1.0	A99
SGM [7]	0.32	5.32	20.0	12.2	18.4	<u>31.1</u>	109
HSM [31]	0.51	2.07	10.3	4.83	10.2	24.6	39.2
iResNet [1]	0.34	3.31	11.3	12.6	22.9	38.8	<u>48.6</u>
DPruner [24]	0.13	4.80	14.7	15.9	30.1	52.3	67.7
PSMNet [2]	0.64	6.68	19.4	23.5	42.1	63.9	84.5
DN-CSS [9]	0.66	4.04	13.9	14.7	22.8	36.0	58.8
Our2D	0.04	<u>3.12</u>	13.8	7.22	<u>15.4</u>	35.1	55.6

Recent 腾讯 ③ Rec

Figure 5. Benchmark Qualitative Results.

KITTI15

NEURAL INFORMATION PROCESSING SYSTEMS

ETH3D

Middlebury

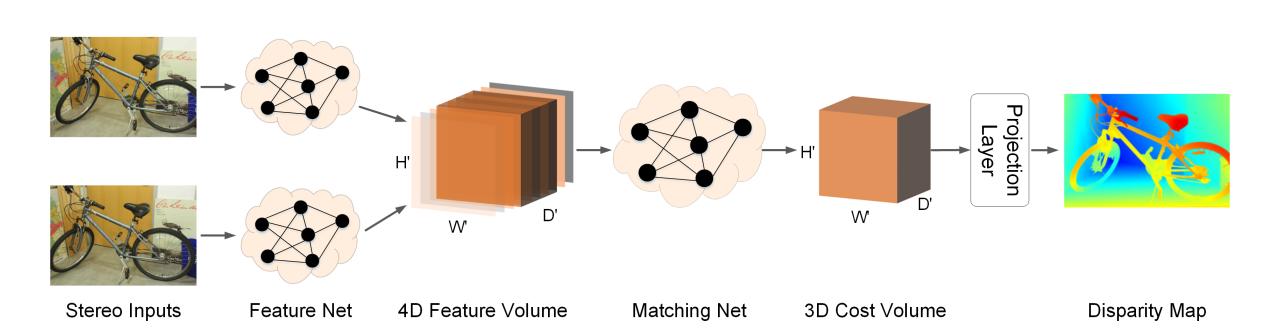
Thanks

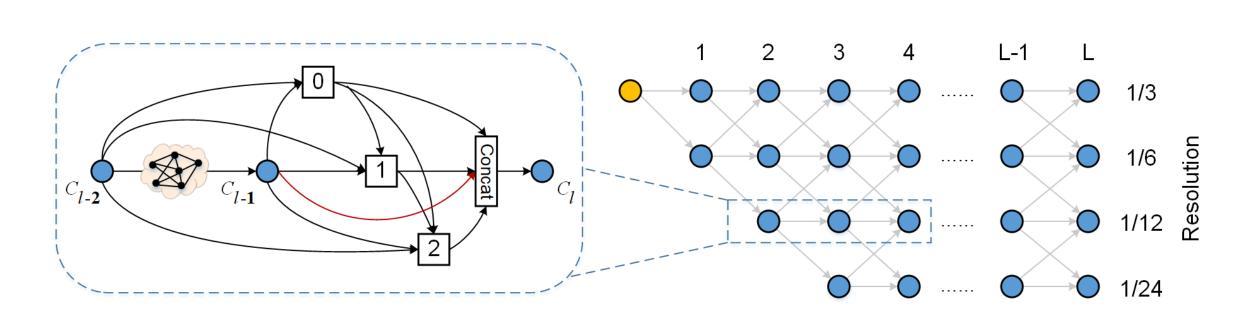
Code is available at:

Hierarchical Neural Architecture Search for Deep Stereo Matching

*Xuelian Cheng^{1,5}, *Yiran Zhong², Mehrtash Harandi^{1,7}, Yuchao Dai³, Xiaojun Chang¹, Hongdong Li^{2,6}, Tom Drummond¹, Zongyuan Ge^{1,4,5}

¹Faculty of Engineering, Monash University, ²Australian National University,
³Northwestern Polytechnical University, ⁴eResearch Centre, Monash University,
⁵Airdoc Research Australia, ⁶ACRV, ⁷DATA61 CSIRO

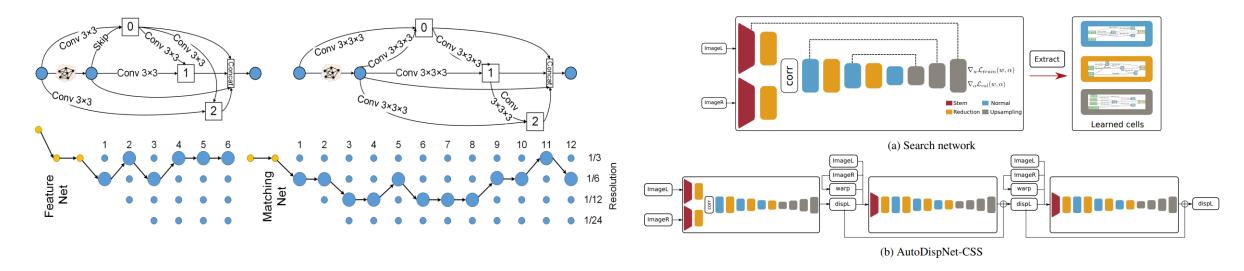




The Proposed Pipeline

EURAL INFORMATION ROCESSING SYSTEMS **Figure 1. The pipeline of our proposed stereo matching network**. Given a pair of stereo images, the Feature Net produces feature maps that are processed by the Matching Net to generate a 3D cost volume. The disparity map can be projected from the cost volume with soft-argmin operation. Feature Net and Matching Net are the only two modules that contain trainable parameters, we utilize the NAS technique to select the optimal structures.

Refined Searching Space


NEURAL INFORMATION PROCESSING SYSTEMS **Figure 2.** Our Refined Search Space. Left: cell level search space; Right: our network level search space. The red arrow on the left represents the proposed residual connections. We set $L^F = 6$ for Feature Net and $L^M = 12$ for Matching Net.

Ours vs AutoDispNet

Our Searched Architecture

AutoDispNet Architecture

Table 1. Comparing with AutoDispNet, our method boosts the performance of **32.12%** in accuracy and **66.67%** in inference speed with only **1.7%** of the parameters.

	Search Level	Params	KITTI 2012	KITTI 2015	Runtime
AutoDispNet	Cell	111M	1.70%	2.18%	0.9s
Ours	Full Network	1.8M	1.13%	1.65%	0.3s

Benchmark Results

5.0

GC-net

GC-net

CSPN

4.5

KITTI 2015

4.5 - 4.0 - <u>8</u> 3.5 -	GANet-de DispNetC DispNet-C AutoDisp	CSS Net-CSS		38M 4.34%	5		4.0 3.5	-	×	PSMNet GANet-dee SegStereo	. –	AutoDis PDSNe GwcNe LEASte	t-g
- 3.5 - Ile -IO 2.5 -	3.51 2.8	1 7% 5.22M			116M 2.19%		[%] 3.0 2.5	0.4	0.41s	0.5s 2.58% 0.6s 2.25		9s 87% .9s	
2.0 -	1.81M 1.65%	2.32% × ^{6.58M} 1.81%			111M 🔷 2.18%		2.0	2 2 1 1 0		2.25	2.	18% 1s 1.74%	1.8s 1.81% >
1.5 ⊥				, , , ,		-	1.5						
	- · · · ·		neters [10 ²	-	1.5	3×10 ⁻¹ 4×	10 ⁻¹	^{6 × 10⁻¹ Runti}	10 me [s]	00	
Set: Metric: Mask:	test dense te bad 0.5 bad nonocc all selected sh	Paran <u>st sparse</u> 1.0 bad	<u>training</u> 2.0 bad	<u>g dense</u> t <u>tra</u> d 4.0 avge	<u>iining spa</u> rr rms	<u>A50</u> <u>A90</u>					me [s]	0°	
Set: Metric: Mask:	bad 0.5 bad	Paran <u>st sparse</u> <u>1.0 bad</u> ow invalio	training 2.0 bac Reset Weight S Avg	g <u>dense</u> <u>tra</u> d <u>4.0</u> avge t sort Refe Austr Austr	rr rms rr rms rence list Bicyc2 MP: 5.6 M nd: 250 r	A50 A90 t Class ClassE MP: 5.7 nd: 610	A95 A99 Compu Cru MP: 1.5 MP: nd: 256 nd: 8	time tir sa CrusaP I 5.5 MP: 5.5 300 nd: 800 im1 im0 im1 ii	me/MP Djemb MP: 5.7 f nd: 320 r	Runti time/G time/G UpembL Hoc MP: 5.7 nd: 320 nd: 4	me [s] D bps Livgrn 5.7 MP: 5.9 410 nd: 320 im1 im0 im1	Nkuba MP: 5.5 nd: 570	
Set: Metric: Mask: Diot s	bad 0.5 bad nonocc all selected sh bad 4.0 (%)	Paran <u>st sparse</u> <u>1.0 bad</u> ow invalio	training 2.0 bac Reset Weight S Avg	g_dense tra d 4.0 avge t sort Refe Austr Austr MP: 5.6 MP: 5.6 nd: 290 nd: 290 im0 im1 im0 im1	ining spa rr rms erence list Bicyc2 MP: 5.6 MP: 5.6 MP: 5.6 MD: 250 1 im0 im1 ir GT c nonocc r	A50 A90 t Class ClassE MP: 5.7 nd: 610 n0 im1 im0 im1	A95 A99 Compu MP: 1.5 nd: 256 1 m0 im1 GT G ⁻	time tir sa CrusaP I 5.5 MP: 5.5 I 300 nd: 800 I im1 im0 im1 I T GT GT pccc nonocc I	Djemb MP: 5.7 nd: 320 m0 im1 GT	Runti time/G time/G UpembL Hoc MP: 5.7 nd: 320 n0 im1 im0	me [s] D D D Livgm 5.7 MP: 5.9 410 nd: 320 im1 im0 im2 T GT occ nonocc	Nkuba MP: 5.5 nd: 570 1 im0 im1 GT	MP: 5.6 M nd: 320 n im0 im1 im
Set: Metric: Mask: plot s Date	bad 0.5 bad nonocc all selected sh bad 4.0 (%) Name	Paran st sparse <u>1.0 bad</u> ow invalio Re: Ф(Ф(В н	training 2.0 bac Reset Weight Avg	g_dense tra d 4.0 avge t sort Refe t sort Refe Austr Austr MP: 5.6 MP: 5.6 nd: 290 nd: 290 im0 im1 im0 im1 GT GT nonocc nonocc	rr rms rence list Bicyc2 MP: 5.6 M MP: 5.6 M 1 im0 im1 ir GT 1 onocc r 1 0 ft	A50 A90 t Class ClassE MP: 5.7 nd: 610 n0 im1 GT GT nonocc nonocc	A95 A99 Compu Cru MP: 1.5 nd: 256 im0 im1 GT G nonocc nono	time tir sa CrusaP I 5.5 MP: 5.5 300 nd: 800 im1 im0 im1 i GT occ nonocc I û 100	me/MP Djemb D MP: 5.7 r m0 im1 ir GT nonocc r	Fime/G Time/G Time/G Time/G Time/G Time/G Time/G Time/G Time/G	me [s] D Livgrn 5.7 MP: 5.9 410 nd: 320 im1 im0 im1 T GT occ nonocc ① ①	n Nkuba MP: 5.5 nd: 570 1 im0 im1 GT nonocc V1	MP: 5.6 M nd: 320 n im0 im1 im GT nonocc n
Set: Metric: Mask: plot s Date \$	bad 0.5 bad nonocc all selected sh bad 4.0 (%) Name	Paran st sparse <u>1.0 bad</u> ow invalio Re: ्रि रि	training 2.0 bac Reset Weight Avg	g dense tra d 4.0 avge t sort Refe Austr Austr MP: 5.6 MP: 5.7 nd: 290 nd: 291 im0 im1 im0 im2 GT GT nonocc 贝① 贝① 贝① 3.57 14 2.46 6	ining spa rr rms erence list Bicyc2 MP: 5.6 M nd: 250 r 1 im0 im1 im GT GT r J. 68 3 1	A50 A90 t Class ClassE MP: 5.7 nd: 610 n0 im1 GT nonocc ①① ①	A95 A99 Compu Pris Compu Pris MP: 1.5 MP: nd: 256 nd: 8 m0 im1 im0 GT G nonocc nonu QT Q 1.87 5 1.57	time tir sa CrusaP I 5.5 MP: 5.5 000 nd: 800 f im1 im0 im1 i GT occ nonocc 1 1.59 5 1	ne/MP Djemb MP: 5.7 I m0 im1 ir GT nonocc I ↓℃	Runti time/G time/G fembL MP: 5.7 nd: 320 n0 im1 GT GT nonocc 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	me [s] D bps Livgrn 5.7 MP: 5.9 410 nd: 320 im1 im0 im1 T GT occ nonocc ① ① ①	n Nkuba MP: 5.5 nd: 570 1 im0 im1 GT nonocc ↓℃ 5.13 1	MP: 5.6 M nd: 320 n im0 im1 im GT nonocc n

Middlebury 2014

