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Introduction

• Given parts laid out in the part canonical space,

𝑅1( ) + 𝑡1

𝑅2( ) + 𝑡2

𝑅3( ) + 𝑡3

𝑅i( ) + 𝑡𝑖

𝑅𝑁( ) + 𝑡𝑁

⋅
⋅
⋅

⋅
⋅
⋅

the goal is to compose a full shape.
• formulated as the pose estimation problem

Suárez-Ruiz et al. Can robots assemble an IKEA chair? Science Robotics 2020
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• Learn a per-part AE for the generative task.
• Transform: scale and translation.

[Wu et al. 2020] 

[Li et al. 2020]

[Schor et al. 2019]



Li and Mo et al. Learning 3D Part Assembly from a Single Image. 2020.

Literature

Part assembly in the camera space from a guidance image.



Literature

Mo et al. PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree Conditions. 2020

Generate shapes from a fixed shape tree structure.



Motivation 

• Important characteristics of the previous works:
• Allow free-form part generation for part geometry

• Assume well-rotated part pose in the beginning

• Assume certain part priors

• A more practical problem setting in our project:
• Parts are provided, and no geometry is predicted.

• 6D part pose of rotation and translation.

• Assume no prior knowledge upon the input parts



Method
• The proposed dynamic graph learning framework
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• The proposed dynamic graph learning framework



Method
• Iterative GNN Backbone

• Edge attribute from node 𝑣𝑗
(𝑡)

to 𝑣𝑖
(𝑡)

:    𝑒𝑖𝑗
(𝑡)

= 𝑓𝑒𝑑𝑔𝑒(𝑣𝑖
𝑡
, 𝑣𝑗

(𝑡)
)

• Update the node attribute 𝑣𝑖
(𝑡+1)

:    𝑣𝑖
(𝑡+1)

= 𝑓𝑛𝑜𝑑𝑒(𝑣𝑖
𝑡
,
1

𝑁
σ𝑗=1
𝑁 𝑒𝑖𝑗

(𝑡)
)

• Predict the 6-DoF part pose 𝑞𝑖
(𝑡+1)

:    𝑞𝑖
(𝑡+1)

= 𝑓𝑝𝑜𝑠𝑒(𝑣𝑖
0
, 𝑣𝑖

𝑡+1
, 𝑞𝑖

(𝑡)
)

• Dynamic Relation Reasoning Module

• Reasoning the relation from the estimated poses:    𝑟𝑖𝑗
(𝑡)

= 𝑓𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑓𝑓𝑒𝑎𝑡 𝑞𝑖
𝑡−1

, 𝑓𝑓𝑒𝑎𝑡(𝑞𝑗
(𝑡−1)

))

• Update the node attribute 𝑣𝑖
(𝑡+1)

according to the implicitly learned relation weight:    𝑣𝑖
(𝑡+1)

=

𝑓𝑛𝑜𝑑𝑒(vi
(t)
,
σ𝑗 𝑒𝑖𝑗

(𝑡)
𝑟𝑖𝑗
(𝑡)

σ𝑗 𝑟𝑖𝑗
(𝑡) )

• Dynamic Part Aggregation Module

• Aggregate the node attributes among the geometrically-equivalent parts 𝑉𝑔 into a single node 𝑣𝑘
(𝑡)

:    

𝑣𝑗
(𝑡)

= 𝑝𝑜𝑜𝑙𝑖𝑛𝑔𝑘∈𝑣𝑔(𝑣𝑘
(𝑡)
)



Experiments Results
• Baselines

• B-Complement

• B-LSTM

• B-Global

• Evaluation metrics
• Shape Chamfer Distance

• Part Accuracy

• Connectivity Accuracy

Shape Chamfer Distance↓ Part Accuracy↑ Connect Accuracy↑

Chair Table Lamp Chair Table Lamp Chair Table Lamp

B-Global 0.0146 0.0112 0.0079 15.7 15.37 22.61 9.90 33.84 18.6

B-LSTM 0.0131 0.0125 0.0077 21.77 28.64 20.78 6.80 22.56 14.05

B-Complement 0.0241 0.0298 0.0150 8.78 2.32 12.67 9.19 15.57 26.56

Ours 0.0091 0.0050 0.0093 39.00 49.51 33.33 23.87 33.96 41.70

Quantitative Comparison between our approach and the baseline methods



Experiments Results

Chair Table Lamp

Ground truth

Ours

B-Global

B-LSTM

B-Complement

Ground truth

Assembly 1

Assembly 3

Assembly 2

Qualitative Results. Left: visual comparisons between our algorithm and the baseline
methods; Right: multiple plausible assembly results generated by our network.



Experiments Results
• Ablation study

Ablation study to demonstrate the effectiveness of each component of our algorithm. Shape CD, PA 
and CA are short for Shape Chamfer Distance, Part Accuracy and Connectivity Accuracy respectively.

Shape CD↓ PA↑ CA↑

Our backbone w/o graph learning 0.0086 26.05 28.07

Our backbone 0.0055 42.09 35.87

Our backbone + relation reasoning 0.0052 46.85 38.60

Our backbone + part aggregation 0.0051 48.01 38.13

Exchange dense/sparse node set iteration 0.0052 49.19 39.62

Input GT adjacency relation 0.0053 45.43 35.66

Reasoning relation from geometry 0.0053 45.11 39.21

Our full algorithm 0.0050 49.51 39.96



Experiments and Analysis
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• Dynamically evolving part relation weights 𝑟𝑖𝑗
(𝑡)

among four common chair part types:
• The orange cells highlight the four directed edges 

with the maximal learned relation weight in the 
matrix, while the yellow cells indicate the minimal 
ones. 

• The vertical axis denotes the emitting parts, and 
the horizontal axis denotes the receiving parts.

• Some discoveries:
• Similar pattern in both even and odd steps
• On average, central parts (eg: back, seat) emit 

more relation weights than peripheral parts (eg: 
leg, arm)

• Central parts guide the part assembly process 
more



Experiments and Analysis

Step 1 Step 2 Step 3 Step 4 Step 5 Ground Truth

• The time-varying part assembly results
• The poses for the central parts are firstly determined 

• And then the peripheral parts gradually adjust their poses to match the central parts



Additional Results - Analysis 
• Implicitly learned relation weights on additional parts and object categories
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Additional Results – Structural Variation 
• Structural variation demonstrated in part assembly

Assembly1 Assembly2 Assembly3 Ground Truth



Additional Results – Structural Variation 
• Structural variation demonstrated in part assembly

Assembly1 Assembly2 Assembly3 Ground Truth



Additional Results – Structural Variation 
• No structural variation for the case with very limited parts

Assembly1 Assembly2 Assembly3 Ground Truth



Future Work
• Floating parts: sometimes fails to assemble a well-connected shape

• eg: legs and arms disconnected/misaligned from base and back

Ours Ground Truth Ours Ground Truth Ours Ground Truth

• Floating Implicit soft relation  -->  explicit hard connection constraints

• Approach: incorporate a joint-centric assembly framework
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