

Deep Multimodal Fusion by Channel Exchanging

Yikai Wang¹, Wenbing Huang¹, Fuchun Sun¹, Tingyang Xu², Yu Rong², Junzhou Huang²

¹ Tsinghua University ² Tencent AI Lab

> A sketched comparison between existing fusion methods and ours :

• The **aggregation-based fusion** processes each modality with a separate sub-network and then combine

all their outputs via an aggregation operation, e.g. <u>averaging</u>, <u>concatenation</u>, or <u>adding with attention</u>.

Seungyong Lee et al. "RDFNet: RGB-D Multi-level Residual Feature Fusion for Indoor Semantic Segmentation". In: ICCV. 2017.
Caner Hazirbas et al. "FuseNet: Incorporating Depth into Semantic Segmentation via Fusion- Based CNN Architecture". In: ACCV. 2016.
Abhinav Valada et al. "Self-Supervised Model Adaptation for Multimodal Semantic Segmentation". In: IJCV. 2020.

> A sketched comparison between existing fusion methods and ours :

• The alignment-based fusion leverages an alignment loss $\operatorname{Alig}_{f_{1:M}}(\boldsymbol{x}^{(i)})$ (usually specified as MMD) for capturing the inter-modal concordance while keeping the outputs of all sub-networks.

[5] Yanhua Cheng et al. "Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation". In: CVPR. 2017.[6] Sijie Song et al. "Modality Compensation Network: Cross-Modal Adaptation for Action Recognition". In: IEEE Trans. Image Process. 2020.

^[4] Jinghua Wang et al. "Learning Common and Specific Features for RGB-D Semantic Segmen- tation with Deconvolutional Networks". In: ECCV. 2016.

> A sketched comparison between existing fusion methods and ours :

- This work proposes **Channel-Exchanging-Network (CEN)** for multimodal fusion, in which:
 - ✓ A global criterion is applied as a self-guidance during training for adaptive feature fusion;
 - Fusion can take place at every layer throughout encoder, instead of several pre-designed fusion positions like existing methods;
 - ✓ The multimodal architecture is almost as **compact** as a unimodal network, with zero fusion parameter.

- Summary of the overall method: channel exchanging by comparing BN scaling factor
 - Create **sparse activations** by using a L1 norm over the **BN scaling factors**;
 - Exchange an activation when its BN scaling factor is lower than a threshold.
- > Details, the whole optimization objective of our method is:

$$\min_{f_{1:M}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(\sum_{m=1}^{M} \alpha_m f_m(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)}\right) + \left(\lambda \sum_{m=1}^{M} \sum_{l=1}^{L} |\hat{\boldsymbol{\gamma}}_{m,l}|\right) \quad s.t. \sum_{m=1}^{M} \alpha_m = 1$$

> Additionally, we use sub-network sharing with independent BNs:

- Better for channel alignment, and capture the common patterns in different modalities;
- Decoupled scaling factors can evaluate the importance of the channels of different modalities.

$$\bigstar : \quad \min_{f_{1:M}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(\sum_{m=1}^{M} \alpha_m f_m(\boldsymbol{x}^{(i)}), \boldsymbol{y}^{(i)}\right) + \left(\lambda \sum_{m=1}^{M} \sum_{l=1}^{L} |\hat{\boldsymbol{\gamma}}_{m,l}|\right) \quad s.t. \sum_{m=1}^{M} \alpha_m = 1$$

> Analysis:

✓ **Theorem 1.** Suppose $\{\gamma_{m,l,c}\}_{m,l,c}$ are the BN scaling factors of any multimodal fusion network (without channel exchanging) optimized by Equation ★. The probability of $\gamma_{m,l,c}$ being attracted to $\gamma_{m,l,c} = 0$ during training (a.k.a. $\gamma_{m,l,c} = 0$ is the local minimum) is equal to $2\Phi\left(\lambda \left| \frac{\partial L}{\partial x'_{m,l,c}} \right|^{-1} \right) - 1$, where Φ derives the cumulative probability of standard Gaussian.

✓ Corollary 1. If the minimal of Equation ★ implies $\gamma_{m,l,c} = 0$, then the channel exchanging (assumed no crossmodal parameter sharing) will only decrease the training loss, *i.e.* $min_{f'_{1:M}} L \le min_{f_{1:M}} L$, given the sufficiently expressive $f'_{1:M}$ and $f_{1:M}$ which denote the cases with and without channel exchanging, respectively.

Experiments: semantic segmentation and image-to-image translation

Visualization of the averaged feature maps for RGB and Depth. From left to right: the input images, the channels of $(\gamma_{rgb} \approx 0, \gamma_{depth} > 0), (\gamma_{rgb} > 0, \gamma_{depth} \approx 0), \text{ and } (\gamma_{rgb} \approx 0, \gamma_{depth} > 0).$

> Experiments: semantic segmentation and image-to-image translation

Comus	BNs	Pagulation	Exchange	Mean IoU (%)			
Convs		ℓ_1 Regulation	Exchange	RGB	Depth	Ensemble	
Unshared	Unshared	×	×	45.5	35.8	47.6	
Shared	Shared	×	×	43.7	35.5	45.2	
Shared	Unshared	×	×	46.2	38.4	48.0	
Shared	Unshared	Half-channel	×	46.0	38.1	47.7	
Shared	Unshared	Half-channel	\checkmark	49.7	45.1	51.1	
Shared	Unshared	All-channel	\checkmark	48.6	39.0	49.8	

Detailed results for different versions of our CEN on NYUDv2. All results are obtained with the backbone RefineNet (ResNet101) of single-scale evaluation for test.

> Experiments: semantic segmentation and image-to-image translation

Modality Approach		Commonly-used setting Mean IoU (%) In total (M)		Same with our set Mean IoU (%) RGB / Depth / Ensemble	tting Params in total (M)	Params used for fusion (M)
RGB	Uni-modal	45.5	118.1	45.5/ - / -	118.1	 _
Depth	Uni-modal	35.8	118.1	- /35.8/ -	118.1	-
	Concat (early)	47.2	120.1	47.0 / 37.5 / 47.6	118.8	0.6
	Concat (middle)	46.7	147.7	46.6 / 37.0 / 47.4	120.3	2.1
	Concat (late)	46.3	169.0	46.3 / 37.2 / 46.9	126.6	8.4
RGB-D	Concat (all-stage)	47.5	171.7	47.8 / 36.9 / 48.3	129.4	11.2
	Align (early)	46.4	238.8	46.3 / 35.8 / 46.7	120.8	2.6
	Align (middle)	47.9	246.7	47.7 / 36.0 / 48.1	128.7	10.5
	Align (late)	47.6	278.1	47.3 / 35.4 / 47.6	160.1	41.9
	Align (all-stage)	46.8	291.9	46.6 / 35.5 / 47.0	173.9	55.7
	Self-att. (early)	47.8	124.9	47.7 / 38.3 / 48.2	123.6	5.4
	Self-att. (middle)	48.3	166.9	48.0 / 38.1 / 48.7	139.4	21.2
	Self-att. (late)	47.5	245.5	47.6/38.1/48.3	203.2	84.9
	Self-att. (all-stage)	48.7	272.3	48.5 / 37.7 / 49.1	231.0	112.8
	Ours	-	-	49.7 / 45.1 / 51.1	118.2	0.0

Comparison with three typical fusion methods including concatenation (concat), fusion by alignment (align), and self-attention (self-att.) on NYUDv2.

> Experiments: semantic segmentation and image-to-image translation

		Backbone Network	NYUDv2			SUN RGB-D		
Modality	Approach		Pixel Acc.	Mean Acc.	Mean IoU	Pixel Acc.	Mean Acc.	Mean IoU
			(%)	(%)	(%)	(%)	(%)	(%)
	FCN-32s [34]	VGG16	60.0	42.2	29.2	68.4	41.1	29.0
RGB	RefineNet [32]	ResNet101	73.8	58.8	46.4	80.8	57.3	46.3
	RefineNet [32]	ResNet152	74.4	59.6	47.6	81.1	57.7	47.0
	FuseNet [19]	VGG16	68.1	50.4	37.9	76.3	48.3	37.3
	ACNet [22]	ResNet50	-	-	48.3	-	-	48.1
	SSMA [45]	ResNet50	75.2	60.5	48.7	81.0	58.1	45.7
	SSMA [45] †	ResNet101	75.8	62.3	49.6	81.6	60.4	47.9
	CBN [46] †	ResNet101	75.5	61.2	48.9	81.5	59.8	47.4
RGB-D	3DGNN [37]	ResNet101	-	-	-	-	57.0	45.9
	SCN [31]	ResNet152	-	-	49.6	-	-	50.7
	CFN [30]	ResNet152	-	-	47.7	-	-	48.1
	RDFNet [29]	ResNet101	75.6	62.2	49.1	80.9	59.6	47.2
	RDFNet [29]	ResNet152	76.0	62.8	50.1	81.5	60.1	47.7
	Ours-RefineNet (single-scale)	ResNet101	76.2	62.8	51.1	82.0	60.9	49.6
	Ours-RefineNet	ResNet101	77.2	63.7	51.7	82.8	61.9	50.2
	Ours-RefineNet	ResNet152	77.4	64.8	52.2	83.2	62.5	50.8
	Ours-PSPNet	ResNet152	77.7	65.0	52.5	83.5	63.2	51.1

† indicates our implemented results.

Comparison with SOTA methods on semantic segmentation.

> Experiments: semantic segmentation and image-to-image translation

On NYUDv2 and SUN RGB-D datasets

On Cityscapes dataset

> Experiments: semantic segmentation and image-to-image translation

Modality	Ours	Baseline	Early	Middle	Late	All-layer
Shade+Texture →RGB	62.63 / 1.65	Concat Average Align Self-att.	87.46 / 3.64 93.72 / 4.22 99.68 / 4.93 83.60 / 3.38	95.16 / 4.67 93.91 / 4.27 95.52 / 4.75 90.79 / 3.92	122.47 / 6.56 126.74 / 7.10 98.33 / 4.70 105.62 / 5.42	78.82 / 3.13 80.64 / 3.24 92.30 / 4.20 73.87 / 2.46
Depth+Normal →RGB	84.33 / 2.70	Concat Average Align Self-att.	105.17 / 5.15 109.25 / 5.50 111.65 / 5.53 100.70 / 4.47	100.29 / 3.37 104.95 / 4.98 108.92 / 5.26 98.63 / 4.35	116.51 / 5.74 122.42 / 6.76 105.85 / 4.98 108.02 / 5.09	99.08 / 4.28 99.63 / 4.41 105.03 / 4.91 96.73 / 3.95

Comparison on image-to-image translation. Evaluation metrics are FID/KID ($\times 10^{-2}$). Lower values indicate better performance.

Modality	Depth	Normal	Texture	Shade	Depth+Normal	Depth+Normal +Texture	Depth+Normal +Texture+Shade
FID	113.91	108.20	97.51	100.96	84.33	60.90	57.19
KID ($\times 10^{-2}$)	5.68	5.42	4.82	5.17	2.70	1.56	1.33

Multimodal fusion on image translation (to RGB) with modalities from 1 to 4.

Experiments: semantic segmentation and image-to-image translation \geq

Texture

Texture + Shade \rightarrow RGB

From texture

Texture

Shade

Self-att.

Shade

From shade

Ours

From shade

Ground truth

> Experiments: semantic segmentation and image-to-image translation

Concat Align Self-att. Ours Ground truth From RGB RGB From normal Normal Concat Align Self-att. Ground truth Ours

Shade

From shade

RGB

From RGB

 $RGB + Shade \rightarrow Normal$ $RGB + Normal \rightarrow Shade$

 $RGB + Edge \rightarrow Depth$

After the paper submission, we verify the effectiveness of our multimodal channel exchanging in the IROS2020 Robotic Grasping Competition, OCRTOC.

Table Organization

We achieve the 1st place among the 17 teams for the simulation track, and 3rd place for the real robot track.

The channel exchanging method is used to predict the semantic masks of objects.

Deep Multimodal Fusion by Channel Exchanging

Yikai Wang, Wenbing Huang, Fuchun Sun, Tingyang Xu, Yu Rong, Junzhou Huang

Code and models at: https://github.com/yikaiw/CEN

Thank you for your listening!