Rethinking Learnable Tree Filter for Generic Feature Transform

NeurIPS 2020

宋林 (Lin Song) stevengrove@stu.xjtu.edu.cn

Conventional methods for visual context modeling

Local-based: increase the receptive region of convolutional kernels e.g., Dilated Convolution, Deformable Convolution, ASPP, PSP Global-based: modeling the pairwise relations based on the visual attention mechanism e.g., Non-Local, CCNet, LatentGNN

Conventional methods for visual context modeling

However, there is still a conflict between long-range dependencies modeling and object details preserving.

LTF-VI: Learnable Tree Filter for Structure-preserving Feature Transform

LTF-VI uses the minimum spanning tree generated by the low-level guided features, which can retain the structural details with linear complexity w.r.t. vertex number

LTF-VI: Learnable Tree Filter for Structure-preserving Feature Transform

LTF-V1 is a differentiable and plug-and-play module

LTF-VI: Learnable Tree Filter for Structure-preserving Feature Transform

LTF-V1 can model higher-order relations, which is crucial for feature discriminability

LTF-VI: Learnable Tree Filter for Structure-preserving Feature Transform

Nevertheless, the geometric constraint and the non-differentiable spanning tree construction in the LTF-V1 module are found to be its Achilles' heels, which impede the usage for more generic feature transform

Reformulation of LTF-VI

The statistical expectation of the sampling from input features under a specific distribution:

$$y_{oldsymbol{i}} = \mathbb{E}_{oldsymbol{h}_{oldsymbol{i}} \sim P_{oldsymbol{\mathcal{G}}_{T}}}[x_{oldsymbol{h}_{oldsymbol{i}}}] = \sum_{orall j \in \mathcal{V}} P_{oldsymbol{\mathcal{G}}_{T}}(h_{oldsymbol{i}} = j) x_{oldsymbol{j}}$$

The distribution is modeled by Markov Random Field: $P_{\mathcal{G}_T}(\mathbf{H}|\mathbf{O}=X) = rac{1}{Z} \prod_{orall i \in \mathcal{V}} \phi_i(h_i, x_i) \prod_{orall (i,j) \in \mathcal{E}} \psi_{i,j}(h_i, h_j)$

The distribution for LTF-VI can be considered as a specific Markov Random Field:

 $\phi_i(h_i, x_i) \equiv 1$

$$\psi_{m{i},m{j}}(h_{m{i}},h_{m{j}}) \coloneqq egin{cases} \delta(h_{m{i}}-h_{m{j}}) & h_{m{i}}
otin \mathrm{Desc}_{\mathcal{G}_T}(m{i}) \ exp(-\omega_{m{i},m{j}})\delta(h_{m{i}}-h_{m{j}}) & h_{m{i}} \in \mathrm{Desc}_{\mathcal{G}_T}(m{i}) \end{cases}$$

NeurIPS 2020

j, j

Reformulation of LTF-V1

The statistical expectation of the sampling from input features under a specific distribution:

$$y_{oldsymbol{i}} = \mathbb{E}_{h_{oldsymbol{i}} \sim P_{\mathcal{G}_{T}}}[x_{h_{oldsymbol{i}}}] = \sum_{orall j \in \mathcal{V}} P_{\mathcal{G}_{T}}(h_{oldsymbol{i}} = j) x_{oldsymbol{j}}$$

The distribution is modeled by Markov Random Field: $P_{\mathcal{G}_T}(\mathbf{H}|\mathbf{O}=X) = rac{1}{Z} \prod_{orall i \in \mathcal{V}} \phi_i(h_i, x_i) \prod_{orall (i,i) \in \mathcal{E}} \psi_{i,j}(h_i, h_j)$

The distribution for LTF-VI can be considered as a specific Markov Random Field: $\phi_i(h_i, x_i) \equiv 1$ Constant modeling and geometric constraint force the LTF-V1 to focus on the nearby region, leading to the difficulty of long-range interactions

 $\psi_{m{i},m{j}}(h_{m{i}},h_{m{j}}) \coloneqq egin{cases} \delta(h_{m{i}}-h_{m{j}}) & h_{m{i}}
otin \mathrm{Desc}_{\mathcal{G}_T}(m{i},m{j}) \ \exp(-\omega_{m{i},m{j}})\delta(h_{m{i}}-h_{m{j}}) & h_{m{i}} \in \mathrm{Desc}_{\mathcal{G}_T}(m{i},m{j}) \end{cases}$

Our Method

Proposed LTF-V2

We use data-dependent modeling for unary term: $\phi_{i}(h_{i}, x_{i}) \coloneqq \begin{cases} f(x_{i}) & h_{i} = i \\ \exp(-\beta) & h_{i} \neq i \end{cases}$ $\psi_{i,j}(h_{i}, h_{j}) \coloneqq \begin{cases} \delta(h_{i} - h_{j}) & h_{i} \notin \text{Desc}_{\mathcal{G}_{T}}(i, j) \\ \exp(-\omega_{i,j})\delta(h_{i} - h_{j}) & h_{i} \in \text{Desc}_{\mathcal{G}_{T}}(i, j) \end{cases}$

Our Method

Proposed LTF-V2

We use data-dependent modeling for unary term: $\phi_{i}(h_{i}, x_{i}) \coloneqq \begin{cases} f(x_{i}) & h_{i} = i \\ \exp(-\beta) & h_{i} \neq i \end{cases}$ $\psi_{i,j}(h_{i}, h_{j}) \coloneqq \begin{cases} \delta(h_{i} - h_{j}) & h_{i} \notin \operatorname{Desc}_{\mathcal{G}_{T}}(i, j) \\ \exp(-\omega_{i,j})\delta(h_{i} - h_{j}) & h_{i} \in \operatorname{Desc}_{\mathcal{G}_{T}}(i, j) \end{cases}$

We can derive the closed-form solution by using belief propagation algorithm:

$$y_{oldsymbol{i}} = rac{1}{z_{oldsymbol{i}}} \sum_{orall x_{oldsymbol{j} \in oldsymbol{X}}} S_{\mathcal{G}_{T}}(E_{oldsymbol{j},oldsymbol{i}}) \exp(-eta)^{|E_{oldsymbol{j},oldsymbol{i}}|} f(x_{oldsymbol{j}}) x_{oldsymbol{j}}$$

Learnable Tree Filter V2 (LTF-V2): relaxes the geometric constraint and enables efficient long-range interactions

Our Method

Framework of Learnable Tree Filter V2 Module The learnable spanning tree module enables fully end-to-end training:

Algorithm 1: Close random spanning tree **Input:** A 4-connected graph \mathcal{G} . **Output:** Random spanning tree \mathcal{G}_T . 1 $\mathcal{G}_T \leftarrow \emptyset$. 2 for $e \in E(\mathcal{G})$ do $| l(e) \leftarrow e.$ ▲ 3 4 while |V(G)| > 1 do for $v_i \in V(\mathcal{G})$ do 5 $\begin{bmatrix} e_i \sim E_{\mathcal{G}}(v_i). \\ \mathcal{G}_T \leftarrow \mathcal{G}_T \cup \{l(e_i)\}. \end{bmatrix}$ 6 7 $\operatorname{Contract}(E(\mathcal{G})).$ 8 $\operatorname{Flatten}(\mathcal{G}).$ 9 10 return \mathcal{G}_T .

Visualization on Instance Segmentation/Object Detection

Visualization of ground-truth (left), vanilla mask-rcnn (mid) and learnable tree filter (right) on COCO val set

Visualization on Semantic Segmentation

Visulaization of learnable tree filter (middle row) and ground-truth (bottom row) on VOC2012 val set

Ablation studies for instance-aware tasks

resource consumption on COCO dataset

Model	Stage	AP_{box}	AP^{50}_{box}	AP_{box}^{75}	AP_{seg}	AP_{seg}^{50}	AP_{seg}^{75}	#FLOPs	#Params
ResNet-50 (1x)	-	38.8	58.7	42.4	35.2	55.6	37.6	279.4B	44.4M
+Non-Local [11] +CCNet [12] +LatentGNN [14] +GCNet [15]	4 345 345 All	39.5 40.1 40.6 40.7	59.6 60.4 61.3 61.0	42.7 44.1 44.5 44.2	35.6 36.0 36.6 36.7	56.7 57.4 58.1 58.1	37.6 38.4 39.2 39.2	+10.67B +16.62B +3.59B +0.35B	+2.09M +6.88M +1.07M +10.0M
+LTF-V1	345	40.0	60.4	43.7	36.1	57.5	38.4	+0.31B	+0.06M
+LTF-V2	3 4 5 345	40.1 40.6 40.2 41.2	59.9 61.0 60.5 61.6	43.9 44.4 43.6 45.2	36.0 36.6 36.1 37.0	57.1 58.2 57.5 58.4	38.3 39.0 38.4 39.5	+0.43B +0.26B +0.17B +0.68B	+0.02M +0.04M +0.08M +0.14M

NeurIPS 2020

Compared with previous work, our method (LTF-V2) achieves higher performance with much less

Ablation study on COCO2017 val set

Ablation studies for semantic segmentation

achieves superior performance on Cityscapes dataset

				Results on Cityscapes test set (fine only)					
Ablatio	n study on Citys	capes val set (fin	e only)	Model	Backbone	mIoU (%)			
Model	MS&Flip	mIoU (%)	mAcc (%)	PSPNet [9]	ResNet-101	78.4			
ResNet-50	X	72.9	95.5	DFN [39]	ResNet-101	79.3			
+LTF-V1	×	75.9	95.8	DenseASPP [50]	DenseNet-161	80.6			
+LTF-V2	×	77.4	96.0	LTF-V1 [16]	ResNet-101	80.8			
ResNet-50		75 5	95.9	CCNet [12]	ResNet-101	81.4			
+LTF-V1	· _	77.2	96.0	DANet [51]	ResNet-101	81.5			
+LTF-V2	✓	78.9	96.1	SPNet [52]	ResNet-101	82.0			
				Ours (LTF-V2)	ResNet-101	82.1			

NeurIPS 2020

Compared with the state-of-the-art work, our method (LTF-V2) based on a simple FPN architecture

Empirical Runtime

For GPU devices, we parallelize the algorithm along with batches, channels, and nodes of the same depth.

NeurIPS 2020

Learnable Tree Filter is easy to use. You only need to add 2 lines to your PyTorch code.

Future Work

Potential Applications

- Replacing the attention module of transformer for natural language processing
- Efficiently modeling higher-order relations, e.g., solving maze problem
- Enhancing sequential representation for video analysis

NeurIPS 2020

ner for natural language processing e.g., solving maze problem <mark>eo analysis</mark>

For any questions, please contact

stevengrove@stu.xjtu.edu.cn

https://github.com/Megvii-BaseDetection/TreeFilter-Torch https://github.com/StevenGrove/LearnableTreeFilterV2

NeurIPS 2020

Thanks

Source code is available

