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Domain Adaptation (DA)

Transfer from a labeled source domain to an unlabeled target one.
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Domain Adaptation Approaches

Moment Matching

Deep Adaptation
Netwotk etc.

Adversarial Training

Domain Adversarial
Neural Network etc.

Learning Transferable Features with Deep Adaptation Networks

3. Deep Adaptation Networks
In unsupervised domain adaptation, we are given a source
domainDs = {(xs

i , y
s
i )}ns

i=1 with ns labeled examples, and
a target domain Dt = {xt

j}nt

j=1 with nt unlabeled exam-
ples. The source domain and target domain are charac-
terized by probability distributions p and q, respectively.
We aim to construct a deep neural network which is able
to learn transferable features that bridge the cross-domain
discrepancy, and build a classifier y = θ(x) which can
minimize target risk ϵt (θ) = Pr(x,y)∼q [θ (x) ̸= y] using
source supervision. In semi-supervised adaptation where
the target has a small number of labeled examples, we de-
note by Da = {(xa

i , ya
i )} the na annotated examples of

source and target domains.

3.1. Model

MK-MMD Domain adaptation is challenging in that the
target domain has no (or only limited) labeled information.
To approach this problem, many existing methods aim to
bound the target error by the source error plus a discrepancy
metric between the source and the target (Ben-David et al.,
2010). Two classes of statistics have been explored for
the two-sample testing, where acceptance or rejection deci-
sions are made for a null hypothesis p = q, given samples
generated respectively from p and q: energy distances and
maximum mean discrepancies (MMD) (Sejdinovic et al.,
2013). In this paper, we focus on the multiple kernel variant
of MMD (MK-MMD) proposed by Gretton et al. (2012b),
which is formalized to jointly maximize the two-sample
test power and minimize the Type II error, i.e., the failure
of rejecting a false null hypothesis.

Denote by Hk be the reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel k. The mean
embedding of distribution p in Hk is a unique element
µk(p) such that Ex∼pf (x) = ⟨f (x) , µk (p)⟩Hk

for all
f ∈ Hk. The MK-MMD dk (p, q) between probability dis-
tributions p and q is defined as the RKHS distance between
the mean embeddings of p and q. The squared formulation
of MK-MMD is defined as

d2
k (p, q) !

∥∥Ep [φ (xs)] − Eq

[
φ

(
xt

)]∥∥2

Hk
. (1)

The most important property is that p = q iff d2
k (p, q) = 0

(Gretton et al., 2012a). The characteristic kernel associated
with the feature map φ, k (xs,xt) = ⟨φ (xs) , φ (xt)⟩, is
defined as the convex combination ofm PSD kernels {ku},

K !
{

k =

m∑

u=1

βuku :

m∑

u=1

βu = 1, βu " 0, ∀u

}
, (2)

where the constraints on coefficients {βu} are imposed to
guarantee that the derived multi-kernel k is characteristic.
As studied theoretically in Gretton et al. (2012b), the kernel
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Figure 1. The DAN architecture for learning transferable features.
Since deep features eventually transition from general to specific
along the network, (1) the features extracted by convolutional lay-
ers conv1–conv3 are general, hence these layers are frozen, (2)
the features extracted by layers conv4–conv5 are slightly less
transferable, hence these layers are learned via fine-tuning, and
(3) fully connected layers fc6–fc8 are tailored to fit specific
tasks, hence they are not transferable and should be adapted with
MK-MMD.

adopted for the mean embeddings of p and q is critical to
ensure the test power and low test error. The multi-kernel
k can leverage different kernels to enhance MK-MMD test,
leading to a principled method for optimal kernel selection.

One of the feasible strategies for controlling the domain
discrepancy is to find an abstract feature representation
through which the source and target domains are simi-
lar (Ben-David et al., 2010). Although this idea has been
explored in several papers (Pan et al., 2011; Zhang et al.,
2013; Wang & Schneider, 2014), to date there has been no
attempt to enhance the transferability of feature representa-
tion via MK-MMD in deep neural networks.

Deep Adaptation Networks (DAN) In this paper, we ex-
plore the idea of MK-MMD-based adaptation for learning
transferable features in deep networks. We start with deep
convolutional neural networks (CNN) (Krizhevsky et al.,
2012), a strong model when it is adapted to novel tasks
(Donahue et al., 2014; Hoffman et al., 2014). The main
challenge is that the target domain has no or just limited
labeled information, hence directly adapting CNN to the
target domain via fine-tuning is impossible or is prone to
over-fitting. With the idea of domain adaptation, we are
targeting a deep adaptation network (DAN) that can exploit
both source-labeled data and target-unlabeled data. Fig-
ure 1 gives an illustration of the proposed DAN model.

We extend the AlexNet architecture (Krizhevsky et al.,
2012), which is comprised of five convolutional layers
(conv1–conv5) and three fully connected layers (fc6–
fc8). Each fc layer ℓ learns a nonlinear mapping hℓ

i =
f ℓ

(
Wℓhℓ−1

i + bℓ
)
, where hℓ

i is the ℓth layer hidden rep-
resentation of point xi,Wℓ and bℓ are the weights and bias
of the ℓth layer, and f ℓ is the activation, taking as recti-
fier units f ℓ(x) = max(0,x) for hidden layers or softmax
units f ℓ (x) = ex/

∑|x|
j=1 exj for the output layer. Letting

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-
ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain

classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions
themselves are constantly changing as learning progresses.
One way to estimate the dissimilarity is to look at the loss
of the domain classifier Gd, provided that the parameters
✓d of the domain classifier have been trained to discrim-
inate between the two feature distributions in an optimal
way.
This observation leads to our idea. At training time, in or-
der to obtain domain-invariant features, we seek the param-
eters ✓f of the feature mapping that maximize the loss of
the domain classifier (by making the two feature distribu-
tions as similar as possible), while simultaneously seeking
the parameters ✓d of the domain classifier that minimize the
loss of the domain classifier. In addition, we seek to mini-
mize the loss of the label predictor.
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Confidence Calibration in Deep Learning1

A model should output a probability reflecting the true frequency:

P(Ŷ = Y |P̂ = c) = c , ∀ c ∈ [0, 1] (1)

where Ŷ is the class prediction and P̂ is its associated confidence.
Deep networks learn high accuracy at the expense of over-confidence.

On Calibration of Modern Neural Networks

Chuan Guo * 1 Geoff Pleiss * 1 Yu Sun * 1 Kilian Q. Weinberger 1

Abstract
Confidence calibration – the problem of predict-
ing probability estimates representative of the
true correctness likelihood – is important for
classification models in many applications. We
discover that modern neural networks, unlike
those from a decade ago, are poorly calibrated.
Through extensive experiments, we observe that
depth, width, weight decay, and Batch Normal-
ization are important factors influencing calibra-
tion. We evaluate the performance of various
post-processing calibration methods on state-of-
the-art architectures with image and document
classification datasets. Our analysis and exper-
iments not only offer insights into neural net-
work learning, but also provide a simple and
straightforward recipe for practical settings: on
most datasets, temperature scaling – a single-
parameter variant of Platt Scaling – is surpris-
ingly effective at calibrating predictions.

1. Introduction
Recent advances in deep learning have dramatically im-
proved neural network accuracy (Simonyan & Zisserman,
2015; Srivastava et al., 2015; He et al., 2016; Huang et al.,
2016; 2017). As a result, neural networks are now entrusted
with making complex decisions in applications, such as ob-
ject detection (Girshick, 2015), speech recognition (Han-
nun et al., 2014), and medical diagnosis (Caruana et al.,
2015). In these settings, neural networks are an essential
component of larger decision making pipelines.

In real-world decision making systems, classification net-
works must not only be accurate, but also should indicate
when they are likely to be incorrect. As an example, con-
sider a self-driving car that uses a neural network to detect
pedestrians and other obstructions (Bojarski et al., 2016).

*Equal contribution, alphabetical order. 1Cornell University.
Correspondence to: Chuan Guo <cg563@cornell.edu>, Geoff
Pleiss <geoff@cs.cornell.edu>, Yu Sun <ys646@cornell.edu>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).
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Figure 1. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a 110-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.

If the detection network is not able to confidently predict
the presence or absence of immediate obstructions, the car
should rely more on the output of other sensors for braking.
Alternatively, in automated health care, control should be
passed on to human doctors when the confidence of a dis-
ease diagnosis network is low (Jiang et al., 2012). Specif-
ically, a network should provide a calibrated confidence
measure in addition to its prediction. In other words, the
probability associated with the predicted class label should
reflect its ground truth correctness likelihood.

Calibrated confidence estimates are also important for
model interpretability. Humans have a natural cognitive in-
tuition for probabilities (Cosmides & Tooby, 1996). Good
confidence estimates provide a valuable extra bit of infor-
mation to establish trustworthiness with the user – espe-
cially for neural networks, whose classification decisions
are often difficult to interpret. Further, good probability
estimates can be used to incorporate neural networks into
other probabilistic models. For example, one can improve
performance by combining network outputs with a lan-
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1Guo et al. On Calibration of Modern Neural Networks. ICML 2017.
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Temperature Scaling for IID Calibration
Calibration Metric: Expected Calibration Error (ECE)

LECE =
B∑

m=1

|Bm|
n
|A(Bm)− C(Bm)|

A(Bm) = |Bm|−1
∑

i∈Bm

1(ŷi = yi ) (Accuracy)

C(Bm) = |Bm|−1
∑

i∈Bm

max
k

p(ŷki |xi ,θ) (Confidence)

(2)

IID Calibration: Temperature Scaling

T ∗ = arg min
T

E(xv ,yv )∈Dv
LNLL (σ(zv/T ), yv ) (3)

σ is the softmax function, LNLL is Negative Log-Likelihood loss.

Transform logits zte into calibrated probabilities pte = σ(zte/T
∗).
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Dilemma of Accuracy vs Confidence in DA
Transfer models yield high accuracy at the expense of over-confidence.
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Figure 1: Left: A comparison between IID Calibration with TransCal, where � denotes the deep
model; Right: an observation on the accuracy and ECE of various DA methods (12 transfer tasks of
Office-Home [47] with ResNet-50 [18]), indicating that DA models learn higher accuracy than the
SourceOnly ones at the expense of well-calibrated probabilities. See more results in D.1 of Appendix.

models and of great significance for decision-making in safety-critical scenarios. With built-in [9, 21]37

or post-hoc [37, 16] recalibration methods, the confidence and accuracy of deep models can be38

well-calibrated in the independent and identically distributed (IID) scenarios. However, it remains39

unclear how to maintain calibration under dataset shifts, especially when we do not have labels from40

the target dataset, as in the general setting of Unsupervised Domain Adaptation (UDA). We identify41

two obstacles in the way of applying calibration to UDA:42

• The lack of labeled examples in the target domain. We know that the existing successful43

post-hoc IID recalibration methods mostly rely on ground-truth labels in the validation set to44

select the optimal temperature [37, 16]. However, since ground-truth labels are not available45

in the target domain, it is not feasible to directly apply IID calibration methods to UDA.46

• Dataset shift entangled with the miscalibration of DNNs. Since DNNs are believed to learn47

more transferable features [30, 50], many domain adaptation methods embed DNNs to48

implicitly close the domain shift and rely on DNNs to achieve higher classification accuracy.49

However, DNNs are prone to over-confidence [16], falling short of a miscalibration problem.50

To this end, we study the open problem of Calibration in DA, which is extremely challenging due to51

the coexistence of domain gap and the lack of target labels. To figure out the calibration error on the52

target domain of domain adaptation models, we first delve into the predictions and confidences of the53

target dataset. By calculating the target accuracy and ECE [16] (a calibration error measure defined54

in 3.1) with various domain adaptation models before calibration, we found something interesting.55

As shown in the right panel of Figure 1, the accuracy increases from the weakest SourceOnly [18]56

model to the latest state-of-the-art MDD [53] model, while the ECE becomes larger as well. That is,57

after applying domain adaptation methods, miscalibration phenomena become severer compared with58

SourceOnly model, indicating that the domain adaptation models learn higher classification accuracy59

at the expense of well-calibrated probabilities. This dilemma is unacceptable in safety-critical60

scenarios, as we need higher accuracy while maintaining calibration. Worse still, the well-performed61

calibration methods in the IID setting cannot be directly applied to DA due to the domain shift.62

To tackle the dilemma between accuracy and calibration, we propose a new Transferable Calibration63

(TransCal) method in DA, achieving accurate calibration with lower bias and variance in a unified64

hyperparameter-free optimization framework, while a comparison with IID calibration is shown65

in the left panel of Figure 1. Specifically, we first define a new calibration measure, Importance66

Weighted Expected Calibration Error (IWECE) to estimate the calibration error in the target domain67

in a transferable calibration framework. Next, we propose a learnable meta parameter to further68

reduce the estimation bias from the perspective of theoretical analysis. Meanwhile, we develop a69

serial control variate method to further reduce the variance of the estimated calibration error. As70

a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA71

methods. This paper has the following contributions:72

• We uncover a dilemma in the open problem of Calibration in DA: existing domain adaptation73

models learn higher classification accuracy at the expense of well-calibrated probabilities.74

• We propose a Transferable Calibration (TransCal) method, achieving accurate calibration75

with lower bias and variance in a unified hyperparameter-free optimization framework.76

• We conduct extensive experiments on various DA methods, datasets, and calibration metrics,77

while the effectiveness of our method has been justified both theoretically and empirically.78
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Figure 1: Left: A comparison between IID Calibration with TransCal, where � denotes the deep
model; Right: an observation on the accuracy and ECE of various DA methods (12 transfer tasks of
Office-Home [52] with ResNet-50 [22]), indicating that DA models learn higher accuracy than the
SourceOnly ones at the expense of well-calibrated probabilities. See more results in D.1 of Appendix.

short of a miscalibration problem [20]. The accuracy of a deep adapted model constitutes only
one side of the coin, here we delve into the other side of the coin, i.e. the calibration of accuracy
and confidence, which requires the model to output a probability that reflects the true frequency
of an event. For example, if an automated diagnosis system says 1,000 patients have lung cancer
with probability 0.1, approximately 100 of them should indeed have lung cancer. Calibration is
fundamental to deep neural models and of great significance for decision-making in safety-critical
scenarios. With built-in [12, 25] or post-hoc [42, 20] recalibration methods, the confidence and
accuracy of deep models can be well-calibrated in the independent and identically distributed (IID)
scenarios. However, it remains unclear how to maintain calibration under dataset shifts, especially
when we do not have labels from the target dataset, as in the general setting of Unsupervised Domain
Adaptation (UDA). We identify two obstacles in the way of applying calibration to UDA:

• The lack of labeled examples in the target domain. We know that the existing successful
post-hoc IID recalibration methods mostly rely on ground-truth labels in the validation set to
select the optimal temperature [42, 20]. However, since ground-truth labels are not available
in the target domain, it is not feasible to directly apply IID calibration methods to UDA.

• Dataset shift entangled with the miscalibration of DNNs. Since DNNs are believed to learn
more transferable features [35, 57], many domain adaptation methods embed DNNs to
implicitly close the domain shift and rely on DNNs to achieve higher classification accuracy.
However, DNNs are prone to over-confidence [20], falling short of a miscalibration problem.

To this end, we study the open problem of Calibration in DA, which is extremely challenging due to
the coexistence of the domain gap and the lack of target labels. To figure out the calibration error
on the target domain of DA models, we first delve into the predictions and confidences of the target
dataset. By calculating the target accuracy and ECE [20] (a calibration error measure defined in 3.1)
with various domain adaptation models before calibration, we found something interesting. As shown
in the right panel of Figure 1, the accuracy increases from the weakest SourceOnly [22] model to the
latest state-of-the-art MDD [60] model, while the ECE becomes larger as well. That is, after applying
domain adaptation methods, miscalibration phenomena become severer compared with SourceOnly
model, indicating that the domain adaptation models learn higher classification accuracy at the
expense of well-calibrated probabilities. This dilemma is unacceptable in safety-critical scenarios, as
we need higher accuracy while maintaining calibration. Worse still, the well-performed calibration
methods in the IID setting cannot be directly applied to DA due to the domain shift.

To tackle the dilemma between accuracy and calibration, we propose a new Transferable Calibration
(TransCal) method in DA, achieving more accurate calibration with lower bias and variance in a
unified hyperparameter-free optimization framework, while a comparison with IID calibration is
shown in the left panel of Figure 1. Specifically, we first define a new calibration measure, Importance
Weighted Expected Calibration Error (IWECE) to estimate the calibration error in the target domain
in a transferable calibration framework. Next, we propose a learnable meta parameter to further
reduce the estimation bias from the perspective of theoretical analysis. Meanwhile, we develop a
serial control variate method to further reduce the variance of the estimated calibration error. As
a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA
methods. This paper has the following contributions:

• We uncover a dilemma in the open problem of Calibration in DA: existing domain adaptation
models learn higher classification accuracy at the expense of well-calibrated probabilities.

2

Calibration in transfer learning is challenging due to the coexistence:
Domain shift — ECE should be unbiased to the target domain
Unlabeled target — ECE on the target domain is incomputable

Bias-Variance-Shift Dilemma of confidence calibration in Transfer Learning
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Transferable Calibration Framework

Ex∼p
[
w(x)L(·)(φ(x), y)

]
is an unbiased estimator of the target calibration error Eq

Ex∼q
[
L(·)(φ(x), y)

]
=

∫

q
L(·)(φ(x), y)q(x)dx

=

∫

p

q(x)

p(x)
L(·)(φ(x), y)p(x)dx = Ex∼p

[
w(x)L(·)(φ(x), y)

] (4)

Discriminative density ratio estimation method: LogReg

Use Bayesian formula to derive ŵ(x) from a logistic regression classifier

ŵ(x) =
q(x)

p(x)
=

v(x|d = 0)

v(x|d = 1)
=

P(d = 1)

P(d = 0)

P(d = 0|x)

P(d = 1|x)
(5)
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Transferable Calibration: Bias Reduction

Importance-weighting for an unbiased estimate of target ECE if ŵ(x) = w(x)

The bias between the estimated ECE and the ground-truth ECE
∣∣∣Ex∼q

[
Lŵ(x)
ECE

]
− Ex∼q

[
Lw(x)
ECE

]∣∣∣
= |Ex∼p [ŵ(x)LECE(φ(x), y)]− Ex∼p [w(x)LECE(φ(x), y)]|
= |Ex∼p [(w(x)− ŵ(x))LECE(φ(x), y)]| .

(6)

The bias of them can be further bounded by

|Ex∼p [(w(x)− ŵ(x))LECE(φ(x), y)]|

≤
√

Ex∼p

[
(w(x)− ŵ(x))2

]
Ex∼p

[
(LECE(φ(x), y))2

]
(Cachy − Schwarz Ineqaulity)

≤1

2

(
Ex∼p

[
(w(x)− ŵ(x))2

]
+ Ex∼p

[
(LECE(φ(x), y))2

])
(AM/GM Inequality)

(7)
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Transferable Calibration: Bias Reduction

For any x s.t. P(d = 1|x) 6= 0, the following inequality holds:

1

M + 1
≤ P(d = 1|x) ≤ 1, since w(x) =

P(d = 0|x)

P(d = 1|x)
=

1− P(d = 1|x)

P(d = 1|x)
=

1

P(d = 1|x)
− 1.

(8)

The discrepancy between ŵ(x) and w(x) can be bounded by

Ex∼p

[
(w(x)− ŵ(x))2

]
= Ex∼p

[(
P(d = 1|x)− P̂(d = 1|x)
P(d = 1|x)P̂(d = 1|x)

)2]

≤ (M + 1)4Ex∼p

[(
P(d = 1|x)− P̂(d = 1|x)

)2]
.

(9)

Use λ (0 ≤ λ ≤ 1) to control the bound M of the importance weights

T ∗ = arg min
T ,λ

Exv∼p [w̃(xv )LECE(σ(φ(xv )/T ), y)] , w̃(xiv ) =
[
ŵ(xiv )

]λ
. (10)
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Control Variate Method

(a) Feature adaptation reduces distribution discrepancy dα+1(q||p)

Varx∼p [LwECE] = Ex∼p
[
(LwECE)2

]
− (Ex∼p [LwECE])2

≤ dα+1(q||p)(Ex∼pLwECE)1−
1
α − (Ex∼pLwECE)2, ∀α > 0.

(11)

(b) Control variate explicitly reduces the variance 2

1 Given two unbiased estimators: E[z ] = ζ,E[t] = τ
2 Construct a new estimator: z? = z + η(t − τ)
3 z? is still unbiased: E[z?] = E[z ] + ηE[t − τ ] = ζ + η(E[t]− E[τ ]) = ζ
4 Var[z?] = Var[z + η(t − τ)] = η2Var[t] + 2ηCov(z , t) + Var[z ]
5 minVar[z?] = (1− ρ2z,t)(Var[z ], when η̂ = −Cov(z,t)

Var[t]

6 Since 0 ≤ ρ2z,t ≤ 1, Var[z?] ≤ Var[z ], the variance is reduced.

2Lemieux. Control variates. In Wiley StatsRef: Statistics Reference Online, American Cancer Society, 2017.
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Transferable Calibration: Variance Reduction
Serial Control Variate: Var[u∗∗] ≤ Var[u∗] ≤ Var[u]

u∗ = u + η1(t1 − τ1)

u∗∗ = u∗ + η2(t2 − τ2)
(12)

First, use importance weight w̃(xs) as a control covariate

E∗q(ŷ, y) = Ẽq(ŷ, y)− 1

ns

Cov(Lw̃ECE, w̃(x))

Var[w̃(x)]

ns∑

i=1

[w̃(xis)− 1]. (13)

Second, use the prediction correctness r(xs) as another control variate

E∗∗q (ŷ, y) = E∗q(ŷ, y)− 1

ns

Cov(Lw̃∗ECE, r(x))

Var[r(x)]

ns∑

i=1

[r(xis)− c], (14)

Reduce bias, variance, and shift all-in-one for Transferable Calibration
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TransCal Algorithm

Algorithm 1 Transferable Calibration in Domain Adaptation

1: Input: Labeled source dataset S =
��

xi
s,y

i
s

� ns

i=1
and unlabled target dataset T =

��
xi

t

� nt

i=1

2: Parameter: Temperature T and learnable meta parameter �

3: Partition S into Str =
��

xi
tr,y

i
tr

� ntr

i=1
and Sv =

��
xi

v,yi
v

� nv

i=1

4: Train a DA model �(x) = G(F (x)) on Str and T via any DA method until convergy

5: Randomly upsample the source or the target dataset to make ntr = nt

6: Fix the DA model and compute features Ftr =
�
f i

tr

 ntr

i=1
, Fv =

�
f i

v

 nv

i=1
, Ft =

�
f i

t

 nt

i=1

7: Train a logistic regression model H to discriminate the features Ftr and Ft until converge

8: Compute bw(xi
v) =

⇥
1 � H(f i

v)
⇤
/H(f i

v) and ew(xi
v) =

⇥
bw(xi

v)
⇤�

9: Compute Ex⇠pL ew
ECE, E⇤

q(by,y) and E⇤⇤
q (by,y) as in Eq. 9, Eq. 11 and Eq. 13 respectively

10: Jointly optimize the transferable calibration objective as T ⇤ = arg min
T,�

E⇤⇤
q (�(�(xv)/T ), yv))

11: Calibrate the logit vectors on the target domain by byt = �(�(xt)/T ⇤)

In summary, the transferable calibration framework (3)–(4) is improved through: 1) lowering bias as
(9); 2) lowering variance by deep adaptation as (10) and by serial control variate as (11) and (13).
The overall process of TransCal is summarized in Algorithm 1. Integrating the above explanation,
TransCal is designed to achieve more accurate calibration in domain adaptation with lower bias and
variance in a unified hyperparameter-free optimization framework.

(a) Before Calibration (b) IID Calibration (c) TransCal (d) Oracle

Figure 2: Reliability diagrams from Clipart to Product with CDAN [30] before and after calibration.

4 Experiments

4.1 Setup

We fully verify our methods on six DA datasets: (1) Office-Home [52]: a dataset with 65 categories,
consisting of 4 domains: Artistic (A), Clipart (C), Product (P) and Real-World (R). (2) VisDA-2017
[41], a Simulation-to-Real dataset with 12 categories. (3) ImageNet-Sketch [53], a large-scale dataset
transferring from ImageNet (I) to Sketch (S) with 1000 categories. (4) Multi-Domain Sentiment [4],
a NLP dataset, comprising of product reviews from amazon.com in four product domains: books
(B), dvds (D), electronics (E), and kitchen appliances (K). (5) DomainNet [40]: a dataset with 345
categories, including 6 domains: Infograph (I), Quickdraw (Q), Real (R), Sketch (S), Clipart (C) and
Painting (P). (6) Office-31 [46] contains 31 categories from 3 domains: Amazon (A), Webcam (W),
DSLR (D). We run each experiment for 10 times. We denote Vanilla as the standard softmax method
before calibration, Oracle as the temperature scaling method while the target labels are available.
Detailed descriptions are included in C.1, C.2 and C.3 of Appendix.

4.2 Results

Qualitative Results. As shown in Figure 2, the blue lines indicate the distributions for perfectly
reliable forecasts with standard deviation, and the red lines denote the conditional distributions of the
observations. Obviously, If the model is perfectly calibrated, these two lines should be matched. We

7
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Experiments and Results

Table 2: ECE (%) vs. Acc (%) via various calibration methods on Office-Home with CDAN

Metric Cal. Method A!C A!P A!R C!A C!P C!R R!A R!C R!P Avg

Acc
Before Cal. 49.4 68.4 75.5 57.6 70.1 70.4 68.9 54.4 81.2 68.3
MC-dropout [12] 47.2 66.2 71.4 57.1 65.7 70.6 68.3 53.6 80.7 66.7
TransCal (ours) 49.4 68.4 75.5 57.6 70.1 70.4 68.9 54.4 81.2 68.3

ECE

Before Cal. 40.2 26.4 17.8 35.8 23.5 21.9 24.8 36.4 14.5 26.8
MC-dropout [12] 33.1 21.3 15.0 24.2 20.5 13.2 25.6 14.2 22.4 19.6
Matrix Scaling 44.7 28.8 19.7 36.1 25.4 24.1 38.1 15.7 29.5 29.1
Vector Scaling 34.7 18.0 11.3 23.4 15.4 11.5 27.3 8.5 20.0 18.9
Temp. Scaling 28.3 17.6 10.1 21.2 13.2 8.2 26.0 8.8 18.1 16.8
CPCS [38] 35.0 29.4 8.3 21.3 29.0 5.6 19.9 9.1 20.3 19.8

TransCal (w/o Bias) 21.7 10.8 5.8 27.6 9.2 6.0 27.4 5.2 16.9 14.5
TransCal (w/o Variance) 31.2 16.4 6.5 31.1 14.7 16.1 27.5 4.1 20.0 18.6
TransCal (ours) 22.9 9.3 5.1 21.7 14.0 6.4 21.6 4.5 15.6 13.5
Oracle 5.8 8.1 4.8 10.0 7.7 4.2 5.5 3.9 6.2 6.2

Table 3: ECE (%) before and after various calibration methods on several DA methods and datasets.

Method Dataset Office-Home Sketch VisDA
Transfer Task A!C A!P A!R C!A C!P C!R Avg I!S S!R

MDD

Before Cal. (Vanilla) 33.6 18.7 13.0 28.9 22.9 19.0 22.7 19.7 30.5
IID Cal. (Temp. Scaling) 28.7 16.4 9.3 21.8 16.5 12.1 17.5 14.7 29.1
CPCS [38] 29.5 17.3 9.6 22.9 16.7 11.8 18.0 14.2 30.4
TransCal (ours) 13.5 11.4 4.8 21.8 7.0 11.1 11.6 8.1 16.1
Oracle 6.8 8.5 4.7 7.0 5.8 4.0 6.1 4.7 7.4

MCD

Before Cal. (Vanilla) 39.4 28.8 20.5 33.9 27.9 20.1 28.4 18.3 25.7
IID Cal. (Temp. Scaling) 21.8 22.0 15.1 22.5 20.5 9.1 18.5 13.0 23.2
CPCS [38] 23.1 22.3 15.4 20.6 20.0 9.0 18.4 12.9 22.9
TransCal (ours) 13.1 20.2 5.1 15.5 9.3 9.1 12.0 10.2 7.8
Oracle 5.6 9.4 2.3 7.1 7.4 2.5 5.7 3.6 1.8

can see that TransCal is much better and approaches the Oracle one on the task: Clipart ! Product.
More reliability diagrams of other tasks to back up this conclusion are shown in D.3 of Appendix.

Quantitative Results. As reported in Table 2 and Table 3, TransCal achieves much lower ECE than
competitors (dereases about 30% or more, e.g. when TransCal is used to calibrate MCD on VisDA,
the target ECE is reduced from 22.9 to 7.8) on various datasets and domain adaptation methods. Some
results of TransCal are even approaching the Oracle ones. Further, the ablation studies on TransCal
(w/o Bias) and TransCal (w/o Variance) verify that both bias reduction term and variance reduction
term are effective. TransCal can be generalized to other tasks of Office-Home (D.2.1), to more DA
methods (D.2.2), and to DomainNet and Office-31 (D.2.3), all shown in Appendix. Further, the results
evaluated by NLL and BS metrics are included in D.2.4 and D.2.5 of Appendix respectively. Apart
from computer vision datasets, TransCal performs well in 12 transfer tasks of a popular NLP dataset:
Amazon Multi-Domain Sentiment in Table 4. As shown in Table. 2, it is noteworthy that TransCal

Table 4: ECE (%) via various calibration methods on Multi-Domain Sentiment.

Cal. Method B!D B!E B!K D!B D!E D!K E!B E!D E!K K!B K!D K!E Avg

Before Cal. 13.7 15.2 17.5 20.4 18.6 21.4 11.3 10.3 23.0 13.1 14.5 20.9 16.7
Temp. Scaling 5.9 8.2 5.0 2.6 5.5 4.0 17.1 17.3 6.2 16.5 14.9 6.6 9.2
TransCal (ours) 8.0 6.1 3.8 2.4 1.4 4.0 7.7 8.4 2.2 10.9 11.2 4.2 5.9
Oracle 2.0 3.0 3.6 1.9 1.3 2.5 2.6 1.4 1.8 2.9 2.0 1.6 2.2
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Experiments and Results

transferring from ImageNet (I) to Sketch (S) with 1000 categories. (4) DomainNet [35]: a dataset231

with 345 categories, including 6 domains: Infograph (I), Quickdraw (Q), Real (R), Sketch (S), Clipart232

(C) and Painting (P). (5) Office-31 [41] contains 31 categories from 3 domains: Amazon (A), Webcam233

(W), DSLR (D). For each dataset, we randomly split it and use the first 80 percent for training and the234

remaining 20 percent data for validation. We run each experiment for 10 times. We denote Vanilla as235

the standard softmax method before calibration, Oracle as the temperature scaling method while the236

target labels are available. Detailed descriptions are included in A.1, A.2 and A.3 of Appendix .

Table 2: ECE (%) before and after various calibration methods on several DA methods and datasets.

Method Dataset Office-Home Sketch VisDA
Transfer Task A!C A!P A!R C!A C!P C!R Avg I!S S!R

MDD

Before Cal. (Vanilla) 33.6 18.7 13.0 28.9 22.9 19.0 22.7 19.7 30.5
IID Cal. (Temp. Scaling) 28.7 16.4 9.3 21.8 16.5 12.1 17.5 14.7 29.1
CPCS [33] 29.5 17.3 9.6 22.9 16.7 11.8 18.0 14.2 30.4

TransCal (w/o Bias) 22.8 14.2 9.0 23.4 14.0 12.8 16.1 10.2 23.5
TransCal (w/o Variance) 20.9 12.1 6.8 21.6 10.2 12.1 13.9 9.7 17.2
TransCal (ours) 13.5 11.4 4.8 21.8 7.0 11.1 11.6 8.1 16.1
Oracle 6.8 8.5 4.7 7.0 5.8 4.0 6.1 4.7 7.4

MCD

Before Cal. (Vanilla) 39.4 28.8 20.5 33.9 27.9 20.1 28.4 18.3 25.7
IID Cal. (Temp. Scaling) 21.8 22.0 15.1 22.5 20.5 9.1 18.5 13.0 23.2
CPCS [33] 23.1 22.3 15.4 20.6 20.0 9.0 18.4 12.9 22.9

TransCal (w/o Bias) 18.5 26.3 15.7 19.2 17.1 8.5 17.6 12.5 10.2
TransCal (w/o Variance) 16.3 19.3 3.6 21.7 9.1 9.1 13.2 11.3 9.8
TransCal (ours) 13.1 20.2 5.1 15.5 9.3 9.1 12.0 10.2 7.8
Oracle 5.6 9.4 2.3 7.1 7.4 2.5 5.7 3.6 1.8

CDAN

Before Cal. (Vanilla) 40.2 26.4 17.8 35.8 23.5 21.9 27.6 21.8 29.5
IID Cal. (Temp. Scaling) 28.3 17.6 10.1 21.2 13.2 8.2 16.4 9.0 26.6
CPCS [33] 24.0 17.8 7.1 22.6 11.8 8.9 15.4 6.9 26.4

TransCal (w/o Bias) 20.3 10.3 5.3 20.7 13.2 5.3 12.5 6.1 24.3
TransCal (w/o Variance) 25.6 16.6 5.5 21.2 8.2 5.6 13.8 5.6 23.9
TransCal (ours) 13.2 9.9 5.2 21.2 8.1 6.4 10.7 4.9 21.2
Oracle 5.8 8.1 4.8 10.0 7.7 4.2 6.8 2.5 2.0

(a) Before Calibration (b) IID Calibration (c) TransCal (d) Oracle

Figure 2: Reliability diagrams from Clipart to Product with CDAN [25] before and after calibration.237

4.2 Results238

Quantitative Results. As reported in Table 2, TransCal achieves much lower ECE than competitors239

(dereases about 30% or more, e.g. when TransCal is used to calibrate MCD on VisDA, the target240

ECE is reduced from 22.9 to 7.8) on various datasets and domain adaptation methods. Some results241

of TransCal are even approaching the Oracle ones. Further, the ablation studies on TransCal (w/o242

Bias) and TransCal (w/o Variance) verify that both bias reduction term and variance reduction term243

are effective. TransCal can be generalized to other tasks of Office-Home (D.2.1), to DomainNet244

and Office-31 (D.2.2), and to more DA methods (D.2.3), all shown in Appendix. Further, the results245

evaluated by NLL and BS metrics are included in D.2.4 and D.2.5 of Appendix respectively.246
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maintains the same accuracy with that before calibration while built-in methods (e.g. MC-dropout)
may degrade prediction accuracy, and they have to modify the network architecture (e.g. adding
dropout layers). We further show that both Vector Scaling and Matrix Scaling underperform TransCal
and Temp Scaling. Matrix Scaling works even worse than the Vanilla model due to overfitting, which
was also observed in the results of Guo et al. [20] reported in Table 2.

(a) Art ! Clipart (b) Art ! Product (c) Art ! Real-World (d) Clipart ! Art

Figure 3: The estimated calibration error with respect to different values of temperature T and meta
parameter � (both are learnable), showing that different models achieve optimal values at different �.

(a) A! R (b) A ! R (�⇤ = 0.67) (c) P!A (d) P!A (�⇤ = 0.53)

Figure 4: Importance weight distribution of two DA tasks after transferable calibration with (4(b),
4(d)) and without (4(a), 4(c)) applying the learnable meta parameter, which lowers the value of M .

Table 5: ECE (%) of TransCal with different control variate (CV) methods on MDD [60].

Dataset Office-Home Sketch VisDA

Transfer Task A!C A!P A!R I!S S!R

TransCal (w/o Control Variate) 20.9±4.68 12.1±2.46 6.8±2.22 9.7±3.17 17.2±5.74
TransCal (CV via only w(x)) 13.9±4.45 9.6 ±1.52 5.9±1.91 9.3±1.68 16.4±5.68
TransCal (CV via only r(x)) 13.8±4.32 10.2±0.97 5.2±1.08 8.6±1.37 16.3±3.32
TransCal (Parallel Control Variate) 13.6±4.43 10.6±1.46 5.2±1.45 8.7±1.54 16.3±3.45
TransCal (Serial Control Variate) 13.5±3.51 11.4±0.81 4.8±0.76 8.1±1.09 16.1±1.20

4.3 Insight Analyses

Why Bias Reduction Term Works. From the perspective of optimization, we explore the estimated
calibration error with respect to different values of temperature (T ) and lambda (�) in Figure 3,
showing that different models achieve optimal values at different �. Thus, it is impossible to attain
optimal estimated calibration error by presetting a fixed �. However, with our unified meta-parameter
optimization framework, we can adaptively find an optimal � for each task. From the perspective of
importance weight distribution as shown in Figure 4, after applying learnable meta parameter �, the
highest values (M in Section 3.3) of importance weight decrease, leading to a smaller bias in Eq. (5).

Why Serial Control Variate Works. As the theoretical analysis in B.2 of Appendix shows, the
variance of E⇤⇤

q can be further reduced since Var[E⇤⇤
q ]  Var[E⇤

q ]  Var[eEq], but other variants of
control variate (CV) method such as Parallel CV may not hold this property. Meanwhile, as shown in
Table 5, TransCal (Serial CV) not only achieves better calibration performance but also attains lower
calibration variance than other variants of control variate methods.

5 Conclusion
In this paper, we delve into an open and important problem of Calibration in DA. We first reveal
that domain adaptation models learn higher accuracy at the expense of well-calibrated probabilities.
Further, we propose a novel transferable calibration (TransCal) approach, achieving more accurate
calibration with lower bias and variance in a unified hyperparameter-free optimization framework.
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Summary

A dilemma in the open problem of Calibration in DA: existing domain adaptation models
learn higher classification accuracy at the expense of well-calibrated probabilities.

A Transferable Calibration (TransCal) method, achieving more accurate calibration with
lower bias and variance in a unified hyperparameter-free optimization framework.

Extensive experiments on various DA methods, datasets, and calibration metrics, while
the effectiveness of our method has been justified both theoretically and empirically.

Code will be available @ github.com/thuml/TransCal
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Future Work

1. Design DA methods based on our ECE-Accuracy-Dilemma observation

2. TransCal may still fall short under the following circumstances:

The domain gap is extremely large even after applying domain adaptation methods

The source or the target dataset is too small to estimate importance weights

TransCal is based on the covariate shift assumption and it remains unclear whether it can
still perform well under label shift, especially when we meet with a long-tailed distribution.

Ximei Wang Transferable Calibration November 24, 2020 16 / 16


