Co-Tuning for Transfer Learning

Kaichao You, Zhi Kou, Mingsheng Long, Jianmin Wang Tsinghua University

Neural Information Processing Systems (NeurIPS 2020)

Transfer Learning

Parameter count in popular pre-trained models from torchvision and transformers.

Pre-trained model	ResNet-50	DenseNet-121	Inception-V3	BERT-base
Task-specific parameters / Million	2.0	1.0	2.0	22.9
Total parameters / Million	25.6	8.0	27.2	108.9
Percentage / %	7.8	12.5	7.4	21.0

Can we reuse task-specific pre-trained layer(s)?

Co-Tuning Solution

Learn the category relationship $p(y_s|y_t)$

Co-Tuning Solution

Learn the category relationship $p(y_s|y_t)$

- Direct approach
 - $f_0(x) \approx p(y_s|x)$
 - average source predictions for each target category

$$p(y_s|y_t = y) \approx |\mathcal{D}_t^y|^{-1} \Sigma_{(x,y_t) \in \mathcal{D}_t^y} f_0(x), \quad \mathcal{D}_t^y = \{(x,y_t) \in \mathcal{D}_t | y_t = y\}$$

- Reserse approach
 - learn the mapping $y_s \to y_t$ from $(f_0(x_t), y_t)$ pairs, which is $p(y_t|y_s)$
 - compute y_t marginal from target labeled data
 - recover $p(y_s|y_t)$ from $p(y_t|y_s)$ and y_t by Bayes's rule
- Calibration (optional)
 - calibrate pre-trained models if source validation data is available
 - can be transformed into a simple convex optimization problem

$$t^* = \arg\min_{t>0} \sum_{i=1}^m \texttt{cross_entropy}(\texttt{softmax}(f(x^i)/t), y^i)$$

- Pre-trained models are fully transferred
- No additional inference cost

Table 2: Classification accuracy in medium-scale classification datasets (Pre-trained ResNet-50).

Dataset	Method	Sampling Rates			
Dutuset		15%	30%	50%	100%
CUB-200-2011	Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning	45.25 ± 0.12 45.08 ± 0.19 46.83 ± 0.21 47.74 ± 0.23 52.58 ± 0.53	59.68 ± 0.21 57.78 ± 0.24 60.37 ± 0.25 63.38 ± 0.29 66.47 ± 0.17	70.12 ± 0.29 69.47 ± 0.29 71.38 ± 0.20 72.56 ± 0.17 74.64 ± 0.36	78.01 ± 0.16 78.44 ± 0.17 78.63 ± 0.18 78.85 ± 0.31 81.24 ± 0.14
Stanford Cars	Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning	36.77 ± 0.12 36.10 ± 0.30 39.37 ± 0.34 40.57 ± 0.12 46.02 ± 0.18	60.63 ± 0.18 60.30 ± 0.28 63.28 ± 0.27 64.13 ± 0.18 69.09 ± 0.10	75.10 ± 0.21 75.48 ± 0.22 76.53 ± 0.24 76.78 ± 0.21 80.66 ± 0.25	87.20 ± 0.19 86.58 ± 0.26 86.32 ± 0.20 87.63 ± 0.27 89.53 ± 0.09
FGVC Aircraft	Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning	39.57 ± 0.20 39.27 ± 0.24 42.16 ± 0.21 40.41 ± 0.12 44.09 ± 0.67	57.46 ± 0.12 57.12 ± 0.27 58.60 ± 0.29 59.23 ± 0.31 61.65 ± 0.32	67.93 ± 0.28 67.46 ± 0.26 68.51 ± 0.25 69.19 ± 0.13 $\textbf{72.73} \pm 0.08$	81.13 ± 0.21 80.98 ± 0.29 80.44 ± 0.20 81.48 ± 0.18 83.87 ± 0.09

Table 3: Classification accuracy in large-scale COCO-70 dataset (Pre-trained DenseNet-121).

Method	Sampling Rates				
	15%	30%	50%	100%	
Fine-tune (baseline)	76.60 ± 0.04	80.15 ± 0.25	82.50 ± 0.43	84.41 ± 0.22	
L^2 -SP (Li et al., 2018)	77.53 ± 0.47	80.67 ± 0.29	83.07 ± 0.39	84.78 ± 0.16	
DELTA (Li et al., 2019)	76.94 ± 0.37	79.72 ± 0.24	82.00 ± 0.52	84.66 ± 0.08	
BSS (Chen et al., 2019)	77.39 ± 0.15	80.74 ± 0.22	82.75 ± 0.59	84.71 ± 0.13	
Co-Tuning	77.64 ± 0.23	81.19 ± 0.18	83.43 ± 0.22	85.65 ± 0.11	

• Works across different pre-trained models and dataset sizes

Thanks