Co-Tuning for Transfer Learning Kaichao You, Zhi Kou, Mingsheng Long, Jianmin Wang Tsinghua University Neural Information Processing Systems (NeurIPS 2020) ## **Transfer Learning** Parameter count in popular pre-trained models from torchvision and transformers. | Pre-trained model | ResNet-50 | DenseNet-121 | Inception-V3 | BERT-base | |------------------------------------|-----------|--------------|--------------|-----------| | Task-specific parameters / Million | 2.0 | 1.0 | 2.0 | 22.9 | | Total parameters / Million | 25.6 | 8.0 | 27.2 | 108.9 | | Percentage / % | 7.8 | 12.5 | 7.4 | 21.0 | Can we reuse task-specific pre-trained layer(s)? ## **Co-Tuning Solution** #### Learn the category relationship $p(y_s|y_t)$ ## **Co-Tuning Solution** #### Learn the category relationship $p(y_s|y_t)$ - Direct approach - $f_0(x) \approx p(y_s|x)$ - average source predictions for each target category $$p(y_s|y_t = y) \approx |\mathcal{D}_t^y|^{-1} \Sigma_{(x,y_t) \in \mathcal{D}_t^y} f_0(x), \quad \mathcal{D}_t^y = \{(x,y_t) \in \mathcal{D}_t | y_t = y\}$$ - Reserse approach - learn the mapping $y_s \to y_t$ from $(f_0(x_t), y_t)$ pairs, which is $p(y_t|y_s)$ - compute y_t marginal from target labeled data - recover $p(y_s|y_t)$ from $p(y_t|y_s)$ and y_t by Bayes's rule - Calibration (optional) - calibrate pre-trained models if source validation data is available - can be transformed into a simple convex optimization problem $$t^* = \arg\min_{t>0} \sum_{i=1}^m \texttt{cross_entropy}(\texttt{softmax}(f(x^i)/t), y^i)$$ - Pre-trained models are fully transferred - No additional inference cost Table 2: Classification accuracy in medium-scale classification datasets (Pre-trained ResNet-50). | Dataset | Method | Sampling Rates | | | | |---------------|---|--|--|---|--| | Dutuset | | 15% | 30% | 50% | 100% | | CUB-200-2011 | Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning | 45.25 ± 0.12
45.08 ± 0.19
46.83 ± 0.21
47.74 ± 0.23
52.58 ± 0.53 | 59.68 ± 0.21
57.78 ± 0.24
60.37 ± 0.25
63.38 ± 0.29
66.47 ± 0.17 | 70.12 ± 0.29 69.47 ± 0.29 71.38 ± 0.20 72.56 ± 0.17 74.64 ± 0.36 | 78.01 ± 0.16 78.44 ± 0.17 78.63 ± 0.18 78.85 ± 0.31 81.24 ± 0.14 | | Stanford Cars | Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning | 36.77 ± 0.12
36.10 ± 0.30
39.37 ± 0.34
40.57 ± 0.12
46.02 ± 0.18 | 60.63 ± 0.18 60.30 ± 0.28 63.28 ± 0.27 64.13 ± 0.18 69.09 ± 0.10 | 75.10 ± 0.21 75.48 ± 0.22 76.53 ± 0.24 76.78 ± 0.21 80.66 ± 0.25 | 87.20 ± 0.19
86.58 ± 0.26
86.32 ± 0.20
87.63 ± 0.27
89.53 ± 0.09 | | FGVC Aircraft | Fine-tune (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning | 39.57 ± 0.20
39.27 ± 0.24
42.16 ± 0.21
40.41 ± 0.12
44.09 ± 0.67 | 57.46 ± 0.12
57.12 ± 0.27
58.60 ± 0.29
59.23 ± 0.31
61.65 ± 0.32 | 67.93 ± 0.28 67.46 ± 0.26 68.51 ± 0.25 69.19 ± 0.13 $\textbf{72.73} \pm 0.08$ | 81.13 ± 0.21
80.98 ± 0.29
80.44 ± 0.20
81.48 ± 0.18
83.87 ± 0.09 | Table 3: Classification accuracy in large-scale COCO-70 dataset (Pre-trained DenseNet-121). | Method | Sampling Rates | | | | | |-----------------------------|------------------|------------------|------------------|------------------|--| | | 15% | 30% | 50% | 100% | | | Fine-tune (baseline) | 76.60 ± 0.04 | 80.15 ± 0.25 | 82.50 ± 0.43 | 84.41 ± 0.22 | | | L^2 -SP (Li et al., 2018) | 77.53 ± 0.47 | 80.67 ± 0.29 | 83.07 ± 0.39 | 84.78 ± 0.16 | | | DELTA (Li et al., 2019) | 76.94 ± 0.37 | 79.72 ± 0.24 | 82.00 ± 0.52 | 84.66 ± 0.08 | | | BSS (Chen et al., 2019) | 77.39 ± 0.15 | 80.74 ± 0.22 | 82.75 ± 0.59 | 84.71 ± 0.13 | | | Co-Tuning | 77.64 ± 0.23 | 81.19 ± 0.18 | 83.43 ± 0.22 | 85.65 ± 0.11 | | • Works across different pre-trained models and dataset sizes # **Thanks**