Learning to Adapt to Evolving Domains

Hong Liu, Mingsheng Long, Jianmin Wang, Yu Wang

School of Software, Tsinghua University Department of Electronic Engineering, Tsinghua University

https://github.com/Liuhong99/EAML Neural Information Processing Systems 2020

3

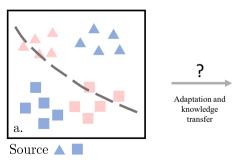
イロト 不得下 イヨト イヨト

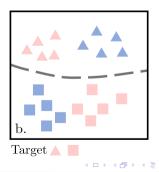
Outline

Domain Adaptation

- Stationary Domain Adaptation
- Evolving Domain Adaptation (EDA)
- Analysis of EDA
- 2 Evolving Adaptive Meta Learning
 - Learn a Meta-Representation for Continually Evolving Target
 - Learning a Meta-Adapter to Overcome Forgetting
- 3 Experiments
 - Datasets
 - Results

э


化医水水管


- 4 西

Stationary Domain Adaptation

Transfer knowledge across different domains:

- The learner is provided with n_s i.i.d. observations {x_s⁽ⁱ⁾, y_s⁽ⁱ⁾}_{i=1}^{n_s} from a source domain of distribution P(x_s, y_s), and n_t i.i.d. observations {x_t⁽ⁱ⁾}_{i=1}^{n_t} from a target domain of distribution Q(x_t, y_t).
- Learn an accurate model for the target domain

Evolving Domain Adaptation (EDA)

A source distribution P(x, y) and an evolving target distribution $Q_t(x, y)$, $t \in [0, 1]$. Typically $d(Q_{t_1}, Q_{t_2}) > 0$ for some distribution distance d. $\lim_{\Delta t \to 0} d(Q_t, Q_{t+\Delta t}) = 0$ as the continuity of the evolvement. Target unlabeled data points come in small batches sequentially, $T = \{X_{t_1}, X_{t_2} \cdots X_{t_n}\}$, forming a trajectory of evolving target. Our goal is to minimize the expected risk on the evolving target.

$$\mathbb{E}_{t\sim U(0,1)}\mathbb{E}_{(x,y)\sim Q_t}\mathcal{L}(f_{\theta}(x),y) = \int_0^1 \mathbb{E}_{(x,y)\sim Q_t}\mathcal{L}(f_{\theta}(x),y)\mathrm{d}t.$$
(1)

- 31

Analysis of EDA

What factors are the performance of EDA related to?

- To solve the EDA problem with target trajectories, we need the target domain to evolve steadily to facilitate knowledge transfer.
- d_{HΔH}(P, Q_t) = sup_{θ,θ'} |E_PL(f_θ(x), f_{θ'}(x)) − E_{Qt}L(f_θ(x), f_{θ'}(x))|, which quantifies the discrepancy. The adaptability measuring the feature of cross-domain learning is λ_t = min_θ [E_PL(f_θ(x), y) + E_{Qt}L(f_θ(x), y)].

Theorem 1. Assume $d_{\mathcal{H}\Delta\mathcal{H}}(Q_{t_1}, Q_{t_2}) \leq \alpha |t_1 - t_2|$ holds with constant α for $t_1, t_2 \geq 0$. Then for any θ , with probability at least $1 - \delta$ over the sampling of target trajectory $t_1, t_2 \cdots t_n$,

$$\mathbb{E}_t \mathbb{E}_{Q_t} L(f_{\theta}(x), y) \leq \mathbb{E}_P L(f_{\theta}(x), y) + \frac{1}{n} \sum_{i=1}^n \left[d_{\mathcal{H} \Delta \mathcal{H}}(P, Q_{t_i}) \right] + \mathbb{E}_t \lambda_t + O\left(\frac{\alpha}{\delta n}\right).$$

イロト 不得 トイヨト イヨト 二日

Analysis of EDA

Learn representations to capture and harness the evolvement of target domain, i.e. make α sufficiently small.

- α indicates the rate of evolvement of the target domain Q_t .
- A reasonably small α means Q_t is evolving evenly, and neighboring target data share knowledge.
- *n* is the length of target trajectory *T*. With small *α* and large *n*, we can solve the EDA problem by adapting source and target trajectories.

Design architectures to mitigate catastrophic forgetting in EDA.

- Target data come online and cannot be stored in meta-testing.
- Adapting to current target inevitably results in forgetting knowledge on previous target.

- 3

(日)

Outline

Domain Adaptation

- Stationary Domain Adaptation
- Evolving Domain Adaptation (EDA)
- Analysis of EDA

Evolving Adaptive Meta Learning

- Learn a Meta-Representation for Continually Evolving Target
- Learning a Meta-Adapter to Overcome Forgetting

3 Experiments

- Datasets
- Results

э

(4) E (4) A (E)

Learn a Meta-Representation for Continually Evolving Target

Recall that Model-Agnostic Meta-Learning (MAML) learns transferable features by training on the support set in the inner loop and minimizing error on the query set in the outer loop. We can learn a representation for adapting to evolving target similarly.

- $h_{ heta}$: the representation function parametrized by heta
- g_{ϕ} the adapter parametrized by ϕ
- c_W : the task classifier with parameters W
- $T_{spt} = \{ \mathbf{X}_{t_1}, \mathbf{X}_{t_2} \cdots \mathbf{X}_{t_n} \}$: target support set
- $T_{qry} = \{ \mathbf{X}'_{t_1}, \mathbf{X}'_{t_2} \cdots \mathbf{X}'_{t_n} \}$: target query set

In the inner loop, we train g_{ϕ} and c_W to adapt to evolving target sequentially on representation f_{θ} . Thus, f_{θ} is fixed in the inner loop.

$$(\phi, W)_{i+1} \leftarrow (\phi, W)_i - \eta_{\text{in}} \nabla_{(\phi, W)} \left[L(f_{\theta, \phi_i, W_i}(\mathsf{X}_s), \mathsf{Y}_s) + d(f_{\theta, \phi_i, W_i}(\mathsf{X}_s), f_{\theta, \phi_i, W_i}(\mathsf{X}_{t_i})) \right], \quad (2)$$

イロト 不得 トイヨト イヨト 二日

Learn a Meta-Representation for Continually Evolving Target

Train the meta-representation in the outer loop.

- We require the representation to make the adaptation in the inner loop more effective.
- Update the representation f_{θ} to minimize the EDA loss on the query set following Equation (1)? no access to target labels.
- Replace the EDA loss with its upper bound, and update θ to control the upper bound.
- Take α into consideration. We use $\max_i d(f_{\theta,\phi_n,W_n}(\mathbf{X}'_{t_{i-1}}), f_{\theta,\phi_n,W_n}(\mathbf{X}'_{t_i}))$ as an approximation of α

$$\theta \leftarrow \theta - \eta_{\text{out}} \nabla_{\theta} L[(f_{\theta,\phi_n,W_n}(\mathbf{X}_s),\mathbf{Y}_s) + \frac{1}{n} \sum_{i=1}^n d(f_{\theta,\phi_n,W_n}(\mathbf{X}_s), f_{\theta,\phi_n,W_n}(\mathbf{X}'_{t_i})) \\ + \max_i d(f_{\theta,\phi_n,W_n}(\mathbf{X}'_{t_{i-1}}), f_{\theta,\phi_n,W_n}(\mathbf{X}'_{t_i}))],$$
(3)

where η_{out} denotes the learning rate of the outer loop.

3

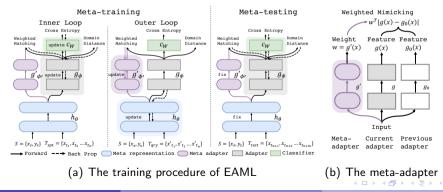
イロト イヨト イヨト

Learning a Meta-Adapter to Overcome Forgetting

Overcome catastrophic forgetting

- $\bullet\,$ Design the adapter g_ϕ to avoid overwriting knowledge
- Introducing a meta-adapter $g'_{\phi'}$ to the original adapter g_{ϕ}

Mimicking intermediate features with meta-adapter in the inner loop


- A well-trained adapter contains useful knowledge for that target data
- Matching the intermediate features when adapting to new target helps overcome forgetting of the old ones

Then the weighted feature matching loss is $\sum_{j=1}^{n} w_j^{\top} ||g_{l,\phi_l}(x_j) - g_{l,\phi_l^{prev}}(x_j)||$, where $w_j \in \mathcal{R}^m$ is the weight of sample x_j . To facilitate knowledge retaining, we introduce the meta-adapter $g'_{l,\phi'_l}(x_j)$. Thus, the total loss is the sum of the weighted feature matching loss in each layer,

$$L_m(\phi',\phi,\phi^{\mathsf{prev}}) = \sum_l \sum_j g'_{l,\phi'_l}(x_j)^\top \|g_{l,\phi_l}(x_j) - g_{l,\phi_l}^{\mathsf{prev}}(x_j)\|.$$

Learning a Meta-Adapter to Overcome Forgetting

In the outer loop, update the meta-adapter to make the weighted feature mimicking preserve more knowledge on previous target data. We use the same loss function as Equation (3), but we calculate the gradient w.r.t. both f_{θ} and $g'_{\phi'}$. Summary of the proposed method:

Outline

Domain Adaptation

- Stationary Domain Adaptation
- Evolving Domain Adaptation (EDA)
- Analysis of EDA
- 2 Evolving Adaptive Meta Learning
 - Learn a Meta-Representation for Continually Evolving Target
 - Learning a Meta-Adapter to Overcome Forgetting
- 3 Experiments
 - Datasets
 - Results

э

Datasets

Datasets

Rotated MNIST, Evolving Vehicles, and Caltran

(c) Evolving Vehicles

イロト 不得 トイヨト イヨト

(d) Caltran

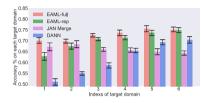
November 27, 2020 13 / 17

- 32

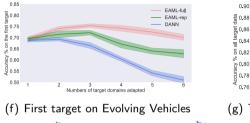
Results

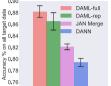
Table: Classification Accuracy (%) on rotated MNIST dataset.

120°	126°	132°	138°	144°	150°	156°	162°	168°	174°	Avg.
17.60	19.29	22.50	24.14	26.49	29.48	31.06	32.26	33.73	33.25	26.98
18.92	21.65	24.32	27.63	29.76	32.01	33.92	36.23	36.68	36.93	29.81
20.20	21.71	25.75	29.16	33.27	37.19	40.04	40.39	39.67	38.71	32.60
22.75	25.11	28.90	30.40	32.62	34.56	35.14	36.55	37.31	38.30	32.16
21.82	23.65	26.48	29.48	32.05	34.99	35.08	36.34	38.33	39.25	31.75
20.39	24.19	28.50	30.10	32.48	35.75	36.23	38.47	38.63	38.05	32.27
24.69	27.48	30.16	32.79	34.88	37.35	39.25	40.96	42.45	42.27	35.23
24.35	26.21	30.33	31.89	33.02	35.87	37.98	39.66	41.40	42.21	34.28
	17.60 18.92 20.20 22.75 21.82 20.39 24.69	17.60 19.29 18.92 21.65 20.20 21.71 22.75 25.11 21.82 23.65 20.39 24.19 24.69 27.48	17.60 19.29 22.50 18.92 21.65 24.32 20.20 21.71 25.75 22.75 25.11 28.90 21.82 23.65 26.48 20.39 24.19 28.50 24.69 27.48 30.16	17.6019.2922.5024.1418.9221.6524.3227.6320.2021.7125.7529.1622.7525.1128.9030.4021.8223.6526.4829.4820.3924.1928.5030.1024.6927.4830.1632.79	17.6019.2922.5024.1426.4918.9221.6524.3227.6329.7620.2021.7125.7529.1633.2722.7525.1128.9030.4032.6221.8223.6526.4829.4832.0520.3924.1928.5030.1032.4824.6927.4830.1632.7934.88	17.6019.2922.5024.1426.4929.4818.9221.6524.3227.6329.7632.0120.2021.7125.7529.1633.2737.1922.7525.1128.9030.4032.6234.5621.8223.6526.4829.4832.0534.9920.3924.1928.5030.1032.4835.7524.6927.4830.1632.7934.8837.35	17.6019.2922.5024.1426.4929.4831.0618.9221.6524.3227.6329.7632.0133.9220.2021.7125.7529.1633.2737.1940.0422.7525.1128.9030.4032.6234.5635.1421.8223.6526.4829.4832.0534.9935.0820.3924.1928.5030.1032.4835.7536.23 24.6927.4830.1632.7934.8837.3539.25	11.010.110.110.010.110.010.017.6019.2922.5024.1426.4929.4831.0632.2618.9221.6524.3227.6329.7632.0133.9236.2320.2021.7125.7529.1633.2737.1940.0440.3922.7525.1128.9030.4032.6234.5635.1436.5521.8223.6526.4829.4832.0534.9935.0836.3420.3924.1928.5030.1032.4835.7536.2338.4724.6927.4830.1632.7934.8837.3539.2540.96	11.019.2922.5024.1426.4929.4831.0632.2633.7318.9221.6524.3227.6329.7632.0133.9236.2336.6820.2021.7125.7529.1633.2737.1940.0440.3939.6722.7525.1128.9030.4032.6234.5635.1436.5537.3121.8223.6526.4829.4832.0534.9935.0836.3438.3320.3924.1928.5030.1032.4835.7536.2338.4738.6324.6927.4830.1632.7934.8837.3539.2540.9642.45	11.019.2922.5024.1426.4929.4831.0632.2633.7333.2518.9221.6524.3227.6329.7632.0133.9236.2336.6836.9320.2021.7125.7529.1633.2737.1940.0440.3939.6738.7122.7525.1128.9030.4032.6234.5635.1436.5537.3138.3021.8223.6526.4829.4832.0534.9935.0836.3438.3339.2520.3924.1928.5030.1032.4835.7536.2338.4738.6338.0524.6927.4830.1632.7934.8837.3539.2540.9642.4542.27


- 32

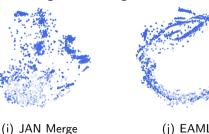
イロト 不得 トイヨト イヨト


Experiments


Results


Results

(e) Each target on Evolving Vehicles



(h) Source Only

(i) EAML 日本《圖》《日》《日》 3 November 27, 2020 15 / 17

Hong Liu

Summary

- A novel and practical domain adaptation setting: Evolving domain adaptation
- Analyze the factor of EDA performance: features tailored to EDA and forgetting
- A meta-learning method to solve EDA efficiently
- Outperform well-established baselines

3

.

Thanks!

Contact: h-l17@mails.tsinghua.edu.cn mingsheng@tsinghua.edu.cn Code: github.com/Liuhong99/EAML

э

(4) (3) (4) (4) (4)