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The Application to Co-occurrence Matrices
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Chernoff Bounds

Theorem (Chernoff Bound, 1952): If X4, X5, -, X}, are independent zero-mean scaler-
valued random variables with |X;| < 1. Then for € € (0,1)

k
1
P EZXi > € | < 2exp(—ke?/4)
i=1

The sample mean

k
1
szi
i=1

falls into this area

with high prob. _ !
Left Tail Right Tail

P[< —€] P[= €]




A Matrix Chernoff Bound for Markov Chains

P(X;|X1)

Independence
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A Matrix Chernoff Bound for Markov Chains
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A Matrix Chernoff Bound for Markov Chains

P(X;|X1) P(X3|X2) P(X4|X3)

Independence

Markov Dependence
Sealar—valued

pimsentil® f." N.."H= BE
Matrix-valued

Random Variables fX)) X)) f(X3) [f(Xy

Eigenvalues of
the sample mean

Sample Mean Matrix %(f(Xl) + f(X2) + f(X3) + f(X4)) matrix

k
=Y Fx)
i=1

Left Tail  falls into thisarea  RigNt Tail
P[< —€] with high prob. P[= €]




A Matrix Chernoff Bound for Markov Chains

k k
1 1
P Iamin <E;f(x,->> < —e] and P [Amax (E;f(x,o) > e]




A Matrix Chernoff Bound for Markov Chains

Theorem: Let P be an regular Markov chain with state space [N], stationary

distribution  and spectral expansion A. Let f: [N] = C%*? be a matrix-valued
function such that

1. VX € [N], f(X) is Hermitian and [|[f(X)|l, < 1;
2. YxenTxf(X) = 0.

Let (X1, X2, -, X) denote a k-step random walk on P starting from an initial
distribution ¢. Then for € € (0, 1):

k
1
P | min ;;ﬂxo < —¢| < lIpllxd?exp(—k(1 — )e?/72)

k
1
P | max ;Zlﬂxi) > €| < l1glld?exp(—k(1 - D)e?/72)
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Co-occurrence Matrix of Sequential Data

Sliding Window 1
X; =(1,23)
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Co-occurrence Matrix of Sequential Data

Sliding Window 2
X, =(2,3,2)




Co-occurrence Matrix of Sequential Data

Sliding Window 3
X3 =(3,2,3)




Markov chain Matrix Chernoff Bound!

Sliding Window 4
X, =(2,31)

c—l
4

1(011) 1(000) 1(000) 1(01())]
(1 0 o)J+=(0 2 1)+={0 0 1]+=(1 0 1
100/ *No10o *No12/ *\o1 o

1
= Z(f(xﬂ + f(X2) + f(X3) + f(X4))
Observation 1:
Let X1, X7, -+, X _ be the sequence of sliding windows, and f maps a sliding window to the co-occurrence matrix
within this window. The co-occurrence matrix C can be written as the sample mean of f(X1), f(X2), -, f(X_T):

L-T
1
C= m;f(xk)

Observation 2: If the input sequence v4, V5, ** is @ Markov Chain, then X4, X5, .-+ is a Markov Chain, too.



Convergence Rate of Co-occurrence Matrices

* The co-occurrence matrix:

== TZ fX)
* The asymptotic expectation of C (denote H diag(m)):

AE[C] = lim E[C 2 — (IIP" + (IIP")T)

Theorem: Let P be a regular Markov chain with state space [n], stationary distribution
 and mixing time 7. Let (v4, -, v;) be a L-step random walk on P starting from a
distribution ¢. Given € € (0, 1), the probability that the co-occurrence matrix C
deviates from its asymptotic expectation AE[C] (in 2-norm) is bounded by:

) e(L-T)
P(|]|C — AE[C]ll, = €) < 2(T + T)||¢pl[zn"exp (— 576(z + T)>

Roughly, one needs L = O(z(logn + logt)/€?) samples to guarantee good estimation
to the co-occurrence matrix.




Experiments
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(a) Barbell Graph (b) Winning Streak Chain (¢) BlogCatalog (d) Random Graph

Figure 1: The convergence rate of co-occurrence matrices on Barbell graph, winning streak chain,
BlogCatalog graph , and random graph (in log-log scale). The x-axis is the trajectory length L and
the y-axis is the approximation error ||C' — AE|
error bar is presented.

Each experiment contains 64 trials, and the
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