

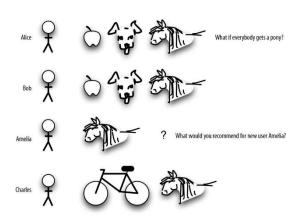
A Matrix Chernoff Bound for Markov Chains and Its Application to Co-occurrence Matrices

Jiezhong Qiu, Chi Wang, Ben Liao, Richard Peng, Jie Tang

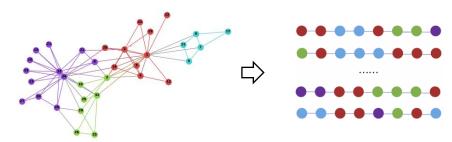
The Application to Co-occurrence Matrices

counts	1	like	enjoy	deep	learning	NLP	flying	
L	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

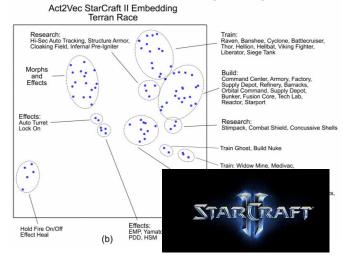
NLP (LDA, Word2vec, Glove)



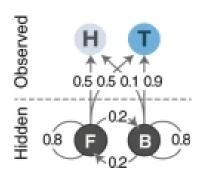
Recommendation System (Pin2Vec, Item2vec)



Graph Learning (DeepWalk, node2vec, metapath2vec)



Reinforcement Learning (Act2Vec)

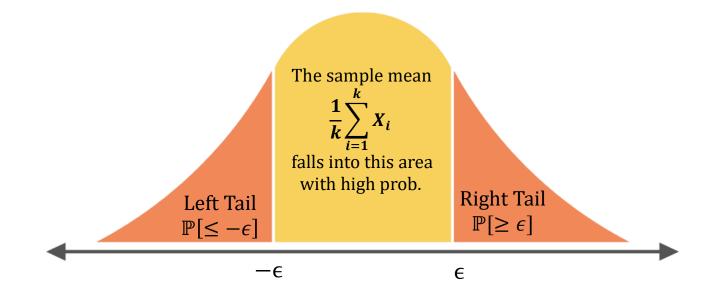


Hidden Markov Models (Emission Co-occurrence)

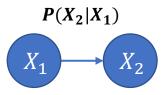
Chernoff Bounds

Theorem (Chernoff Bound, 1952): If X_1, X_2, \cdots, X_k are independent zero-mean scaler-valued random variables with $|X_i| \le 1$. Then for $\epsilon \in (0, 1)$

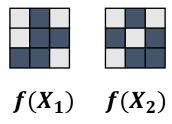
$$\mathbb{P}\left(\left|\frac{1}{k}\sum_{i=1}^{k}X_{i}\right|\geq\epsilon\right)\leq2\exp(-k\epsilon^{2}/4)$$



Independence Markov Dependence



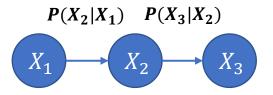
Scalar-valued
Random Variables
Matrix-valued
Random Variables



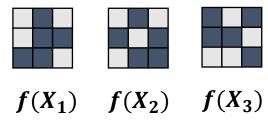
Sample Mean Matrix

$$\frac{1}{2}(f(X_1) + f(X_2))$$

Independence
Markov Dependence



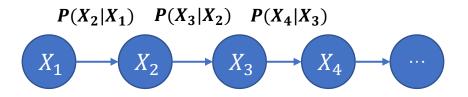
Scalar-valued
Random Variables
Matrix-valued
Random Variables



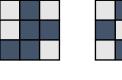
Sample Mean Matrix

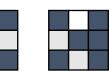
$$\frac{1}{3}(f(X_1) + f(X_2) + f(X_3))$$

Independence Markov Dependence



Scalar-valued
Random Variables
Matrix-valued
Random Variables





$$f(X_1)$$

$$f(X_2)$$

$$f(X_3)$$

$$f(X_4)$$

Sample Mean Matrix

$$\frac{1}{4}(f(X_1) + f(X_2) + f(X_3) + f(X_4))$$

Left Tail $\mathbb{P}[\leq -\epsilon]$

Eigenvalues of the sample mean matrix $\frac{1}{k} \sum_{i=1}^{k} f(X_i)$ falls into this area with high prob.

Right Tail $\mathbb{P}[\geq \epsilon]$

$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_{i})\right) \leq -\epsilon\right] \quad \text{and} \quad \mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_{i})\right) \geq \epsilon\right]$$

Comparison	X	f	Tail Probability
Chernoff `52	i.i.d scalars	Identity	$\exp(-\Omega(k\epsilon^2))$
Tropp`12	i.i.d matrices	identity	$d\exp(-\Omega(k\epsilon^2))$
CLLM' 12	Random walk on a regular Markov with spectral expansion λ	$[N] o \mathbb{C}$	$\exp(-\Omega(k(1-\lambda)\epsilon^2))$
GLSS`18	Random walk on an undirected regular graph with second eigenvalue λ	$[N] o \mathbb{C}^{d imes d}$	$d\exp(-\Omega(k(1-\lambda)\epsilon^2))$
Ours	Random walk on a regular Markov chain with spectral expansion λ	$[N] o \mathbb{C}^{d imes d}$	$d\exp(-\Omega(k(1-\lambda)\epsilon^2))$

Theorem: Let P be an regular Markov chain with state space [N], stationary distribution π and spectral expansion λ . Let $f: [N] \to \mathbb{C}^{d \times d}$ be a matrix-valued function such that

- 1. $\forall X \in [N], f(X)$ is Hermitian and $||f(X)||_2 \leq 1$;
- $2. \sum_{X \in [N]} \pi_X f(X) = 0.$

Let (X_1, X_2, \dots, X_k) denote a k-step random walk on P starting from an initial distribution ϕ . Then for $\epsilon \in (0, 1)$:

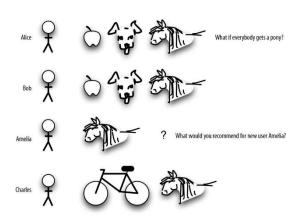
$$\mathbb{P}\left[\lambda_{\min}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_{i})\right) \leq -\epsilon\right] \leq \|\phi\|_{\pi}d^{2}\exp(-k(1-\lambda)\epsilon^{2}/72)$$

$$\mathbb{P}\left[\lambda_{\max}\left(\frac{1}{k}\sum_{i=1}^{k}f(X_i)\right) \geq \epsilon\right] \leq \|\phi\|_{\pi}d^2\exp(-k(1-\lambda)\epsilon^2/72)$$

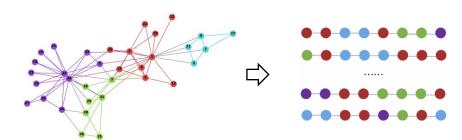
The Application to Co-occurrence Matrices

counts	1	like	enjoy	deep	learning	NLP	flying	
L	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

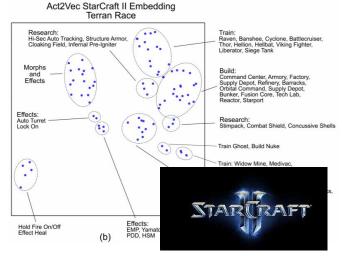
NLP (LDA, Word2vec, Glove)



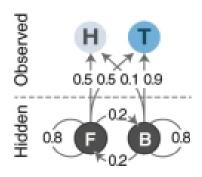
Recommendation System (Pin2Vec, Item2vec)



Graph Representation Learning (DeepWalk, node2vec, metapath2vec)



Reinforcement Learning (Act2Vec)



Hidden Markov Models (Emission Co-occurrence)

Co-occurrence Matrix of Sequential Data

Sliding Window 1

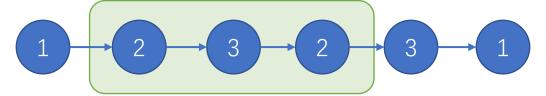
$$X_1 = (1,2,3)$$

$$\mathbf{C} = \frac{1}{4} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Co-occurrence Matrix of Sequential Data

Sliding Window 2

$$X_2 = (2,3,2)$$

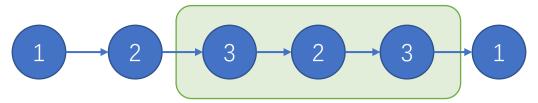


$$\boldsymbol{C} = \frac{1}{2} \begin{bmatrix} 1 \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix}$$

Co-occurrence Matrix of Sequential Data

Sliding Window 3

$$X_3 = (3,2,3)$$

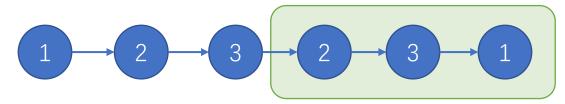


$$\mathbf{C} = \frac{1}{3} \begin{bmatrix} 1 \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} \end{bmatrix}$$

Markov chain Matrix Chernoff Bound!

Sliding Window 4

$$X_4 = (2,3,1)$$



$$C = \frac{1}{4} \begin{bmatrix} \frac{1}{4} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix}$$
$$= \frac{1}{4} (f(X_1) + f(X_2) + f(X_3) + f(X_4))$$

Observation 1:

Let X_1, X_2, \dots, X_{L-T} be the sequence of sliding windows, and f maps a sliding window to the co-occurrence matrix within this window. The co-occurrence matrix C can be written as the **sample mean** of $f(X_1), f(X_2), \dots, f(X_{L-T})$:

$$C = \frac{1}{L-T} \sum_{k=1}^{L-T} f(X_k)$$

Observation 2: If the input sequence v_1, v_2, \cdots is a Markov Chain, then X_1, X_2, \cdots is a Markov Chain, too.

Convergence Rate of Co-occurrence Matrices

The co-occurrence matrix:

$$C = \frac{1}{L-T} \sum_{k=1}^{L-T} f(X_k)$$

• The asymptotic expectation of C (denote $\Pi = \operatorname{diag}(\pi)$):

$$\mathbb{AE}[C] = \lim_{L \to +\infty} \mathbb{E}[C] = \sum_{r=1}^{T} \frac{1}{2T} (\Pi P^r + (\Pi P^r)^{\top})$$

Theorem: Let P be a regular Markov chain with state space [n], stationary distribution π and mixing time τ . Let (v_1, \cdots, v_L) be a L-step random walk on P starting from a distribution ϕ . Given $\epsilon \in (0, 1)$, the probability that the co-occurrence matrix C deviates from its asymptotic expectation $\mathbb{AE}[C]$ (in 2-norm) is bounded by:

$$\mathbb{P}(\|\boldsymbol{\mathcal{C}} - \mathbb{AE}[\boldsymbol{\mathcal{C}}]\|_2 \ge \epsilon) \le 2(\tau + T)\|\boldsymbol{\phi}\|_{\pi} n^2 \exp\left(-\frac{\epsilon^2(L - T)}{576(\tau + T)}\right)$$

Roughly, one needs $L = O(\tau(\log n + \log \tau)/\epsilon^2)$ samples to guarantee good estimation to the co-occurrence matrix.

Experiments

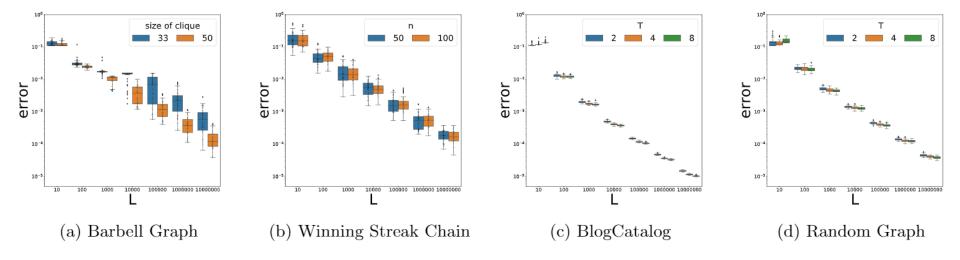


Figure 1: The convergence rate of co-occurrence matrices on Barbell graph, winning streak chain, BlogCatalog graph, and random graph (in log-log scale). The x-axis is the trajectory length L and the y-axis is the approximation error $\|C - \mathbb{AE}[C]\|_2$. Each experiment contains 64 trials, and the error bar is presented.

Thanks!

https://arxiv.org/abs/2008.02464