
Bi-Classifier Determinacy Maximization for 
Unsupervised Domain Adaptation

There exist two popular paradigms to conduct 
adversarial domain adaptation either by constructing 
a domain discriminator or by utilizing two distinct 
classifiers. As for the second paradigm, the selection 
of classifier discrepancy loss between two task-
specific classifiers is critical for expected adaptability.
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Given 𝒑𝒑𝟏𝟏 and 𝒑𝒑𝟐𝟐 as the bi-classifier softmax outputs, 
we investigate the classifier discrepancy by Bi-
classifier Prediction Relevance Matrix 𝜜𝜜: 𝜜𝜜= 𝒑𝒑𝟏𝟏𝒑𝒑𝟐𝟐𝑻𝑻. 
Therefore, we define the CDD loss as:
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• Non-negative;
• Γ 𝒑𝒑𝟏𝟏,𝒑𝒑𝟐𝟐 = 0 iff. 𝒑𝒑𝟏𝟏 = 𝒑𝒑𝟐𝟐 and each of the 

probabilistic output is one-hot vector;
• Symmetric;
• Satisfies triangle inequality.
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