国际人	丁知能会 议
	上百兆女权
AAA	ZUZI化义化尽测讲云

Entity Structure Within and Throughout:

Modeling Mention Dependencies for Document-Level Relation Extraction

Benfeng Xu¹, Quan Wang², Yajuan Lyu², Yong Zhu², Zhendong Mao¹

¹School of Information Science and Technology, University of Science and Technology of China

²Baidu Inc.

Various dependencies indicate rich

interactions among entity mentions,

and thereby provide informative

priors for relation extraction, e.g.;

Blue link: reside in the same

context

multiple hops

sentence and depend on local

Red link: coreference to each othe

Green link: no direct connection,

but might be associated via

Motivating Example

Coming Down Again

S:Coming Down Again

\$3~\$4:

S6~S11: ...

S:Mick Jagger

S:Nicky Hopkins

S1: "Coming Down Again" is a song by the rolling stones

S2: It is sung as a duet by Keith Richards and Mick Jagger

S5: The song opens with Stones recording veteran Nicky

bassline performed by Mick Taylor.

Hopkins playing keyboards alongside a fluid, prominent

R:Performer

R:Member of

R:Member of

featured on their 1973 album Goats Head Soup

O:Rolling Stones

O:Rolling Stones

O:Rolling Stones

Introduction

Entities, as the essential elements in relation extraction tasks, exhibit certain structure. We formulate such structure as distinctive dependencies between mention pairs, and propose SSAN to incorporate them within the standard self-attention mechanism and throughout the overall encoding stage. Specifically, we design two alternative transformation modules inside each self-attention building block to produce attentive biases so as to adaptively regularize its attention flow.

We achieve new state-of-the-art results on three popular document-level relation extraction datasets and the visualization shows how entity structure guides the model for better relation extraction.

Approach How to model entity structure? intra+coref O inter+coref O intraNE O How to formulate the structure of entities? Vanilla self-attention Add & Norm $\boldsymbol{e}_{ij}^{l} = \frac{(\boldsymbol{x}_{i}^{l} \boldsymbol{W}_{l}^{Q})(\boldsymbol{x}_{j}^{l} \boldsymbol{W}_{l}^{K})^{T}}{\boldsymbol{w}_{l}^{L}}$ intra+relate 🔘 inter+relate 🔵 NA 🛛 🔘 Co-occurrence structure distinguishes intra-sentential N E1 N E1 E2 N E1 N E3 E3 \sqrt{d} interactions that depend on local context from inter-00000000000 Biaffine Transformation sentential ones that require cross sentence reasoning. E1 $\tilde{\boldsymbol{e}}_{ij}^{l} = \frac{\boldsymbol{q}_{i}^{l} \boldsymbol{k}_{i}^{l^{T}} + \boldsymbol{q}_{i}^{l} \boldsymbol{A}_{l,s_{ij}} \boldsymbol{k}_{i}^{l^{T}} + \boldsymbol{b}_{l,s_{ij}}}{\boldsymbol{h}_{i}^{l^{T}} + \boldsymbol{b}_{l,s_{ij}}}$ Add & Norm N 0000000000 Coreference structure distinguishes coreferential S1 Nx E1 mention pairs from related (under the schema) Decomposed Linear Transformation E2 00000000000 mention pairs $\boldsymbol{q}_{i}^{l}\boldsymbol{k}_{i}^{l^{T}}+\boldsymbol{q}_{i}^{l}\boldsymbol{K}_{l,s_{i,j}}^{T}+\boldsymbol{Q}_{l,s_{i,j}}\boldsymbol{k}_{i}^{l^{T}}+\boldsymbol{b}_{l,s_{i,j}}$ Tra 000000000000 E1 Coreference \sqrt{d} 00000000000 N S2 True False structural prior between token i and token j Entity intra+relate Structure $s_{i,j} \in \{\text{intra+coref, inter+coref, intra+relate,}\}$ True intra+coref J E3 Co-occurence inter+relate, intranet, NA} $#A_{l, s_{l,j}} K_{l, s_{l,j}}^{T} Q_{l, s_{l,j}} b_{l, s_{l,j}}$: learnable modules False inter+coref inter+relate

Results			CDR & GDA				
DocRED			Model	Dev F1	Test F1	Intra- / Inter- Test F1	
Model	Dev Ign F1 / F1	Test Ign F1 / F1	(Gu et al. 2017) BRAN(2018) CNN+CNNchar(2018)	-	61.3 62.1 62.3	57.2/11.7 -/- -/-	
ContexAware (2019) EoG*(2019) BERT Two-Phase (2019a) GloVe+LSR (2020)	48.94 / 51.09 45.94 / 52.15 - / 54.42 48.82 / 55.17	48.40 / 50.70 49.48 / 51.82 - / 53.92 52.15 / 54.18	GCNN(2019) EoG (2019) LSR (2020) LSR w/o MDP (2020) BERT (2020) SciBERT (2020)	57.2 63.6	58.6 63.6 61.2 64.8 60.5 64.0	-/- 68.2/50.9 66.2/50.3 68.9/53.1 -/-	
HINBERT (2020) CorefBERT Base (2020) CorefBERT Large (2020) BERT+LSR (2020)	54.29 / 56.31 55.32 / 57.51 56.73 / 58.88 52.43 / 59.00	53.70 / 55.60 54.54 / 56.96 56.48 / 58.70 56.97 / 59.05	BERT Base Baseline SSAN _{Decomp} SSAN _{Biaffine} BERT Large Baseline	61.7 63.0 64.7 65.3	61.4 61.2 62.7 63.6	69.3 / 44.9 68.6 / 45.1 70.4 / 44.7 70.8 / 49.0	
BERT Base Baseline SSAN _{Decomp}	57.84 / 59.93 56.29 / 58.60 56.68 / 58.95 57.03 / 59.19	57.68 / 59.91 55.08 / 57.54 56.06 / 58.41 55.84 / 58.16	SSAN Decomp SSAN Biaffine SciBERT Baseline SSAN Decomp SSAN Biaffine	68.2 67.9 68.4	65.8 67.0 68.7	71.9 / 53.3 72.6 / 55.8 74.5 / 56.2	
BERT Large Baseline	58.11 / 60.18	57.91 / 60.03	Model	Dev F1	Test F1	Intra- / Inter- Test F1	
SSAN _{Decomp} SSAN _{Biaffine}	58.42 / 60.36 59.12 / 61.09	57.97 / 60.01 58.76 / 60.81	EoG (2019) LSR (2020) LSR w/o MDP (2020)	78.7	81.5 79.6 82.2	85.2 / 49.3 83.1 / 49.6 85.4 / 51.1	
RoBERTa Base Baseline SSAN _{Decomp} SSAN _{Biaffine}	57.47 / 59.52 58.29 / 60.22 58.83 / 60.89	57.27 / 59.48 57.72 / 59.75 57.71 / 59.94	BERT Base Baseline SSAN _{Decomp} SSAN _{Biaffine}	79.8 81.5 81.6	81.2 83.4 82.1	84.7 / 60.3 86.7 / 62.3 86.1 / 56.8	
RoBERTa Large Baseline SSAN _{Decomp}	58.45 / 60.58 59.54 / 61.50	58.43 / 60.54 59.11 / 61.24	BERT Large Baseline SSAN _{Decomp} SSAN _{Biaffine}	80.4 82.0 82.2	81.6 83.8 83.9	84.9 / 61.5 86.6 / 65.0 86.9 / 63.9	
+ Adaptation	63.76 / 65.69	63.78 / 65.92	SciBERT Baseline SSAN _{Decomp} SSAN _{Biaffine}	81.4 82.5 82.8	83.6 83.2 83.7	87.2 / 61.8 87.0 / 60.0 86.6 / 65.3	

Dependency	Ign F1	F1	Bias Term
SSAN _{Biaffine} (RoBERTa Large)	60.25	62.08	RoBERTa Large baseline
- intra+coref	59.59	61.57	$+b_{s_{ij}}$
- intra+relate	59.92	61.91	$+Q_{s_{ij}}k_j^I$
- inter+coref	59.87	61.74	$+ \boldsymbol{q}_i \boldsymbol{K}_{s_{ij}}^T$
- inter+relate	59.92	61.84	$+ \boldsymbol{q}_i \boldsymbol{K}_{s_{i,i}}^T + \boldsymbol{Q}_{s_{i,i}} \boldsymbol{k}_i^T + \boldsymbol{b}_s$
- intraNE	59.96	61.97	$+q_i A_{s_{ij}} k_i^T$
- all	58.45	60.58	$+ \boldsymbol{q}_i \boldsymbol{A}_{s_{ij}} \boldsymbol{k}_j^T + b_{s_{ij}}$

Ablation on entity structure formulation

Ablation on Transformation modules

 Term
 Ign F1

 baseline (w/o bias)
 58.45

 58.62

60.58 60.59

60.65

61.31

62.08

58.79

59.26

59.54 61.50

59.83 61.75

60.25

