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Consumer Loan Detection: Motivation: e
« Consumer loans, i.e., loans given to consumers to finance certain v | Fraudulent
types of expenditures, is increasingly popular. e '1 Eapplicants tend to
« Loan fraud detection is formulated as a node classification LN ~ =) have more
problem, i.e., predict whether an applicant node is fraudulent given : :  intermediary :
node attribute and social relationships among nodes. ! . neighbors and seller:
. Qraph neural network with a Role-constra!ned Cond!tlonal random " — _ o~ : neighbors :
field, namely GRC, to learn the representation of applicants. Relation Applicant Relation -
(a) Average degree with Intermediary (b) Average degree with Seller
S/ F, F.  GRC is equiped with a conditional random field component to learn
__________ \ e e N role-aware node represenations,thus distinguishing the fraudulent
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METHOD

GRC: Graph neural network with a Role-constrained Conditional random field

» Feature transformation and Neighbors aggregation
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EXPERIMENTS

Experimental results:

Attntion analysis:

Ablation study:

Table 1: Results of loan fraud detection « “Relation3” and “Time slot2” are of  Each component achieves the positive
_ higher importance effect.
Size  Method SVM___ MLP __ GCN__ GRC « Modeling the impacts of relations and time * The edge attributes are important to
Precision 66.32% 72.80% 69.78%  72.28% _ . . . .
1,000 Recall 51.00% 44.20% 61.20% 82.40% slots is necessary. |dent|fy the |mportant nelghbors.
F1-Score 57.66% 55.00% 65.21% 77.01% 03 09 P
Precision 65.80% 71.25% 68.59% 74.38%
2,000 Recall 51.60% 46.60% 69.00%  89.70% 0s v Table 2: Ablation study
F1-Score 57.84% 56.35% 68.79%  81.32%
— 5 . g Method precision Recall F1 score
PI'CCISIOI’I 66.50% 69.25% 70.35% 77.09% ;0 . ;ﬂ 0.4 GRC(W/O CRF) 77.71% 91.00% 83.83%
3,000 Recall 4710% 5180% 7160% 8950% § ' 0.189 g 03 GRC(W/O EA) 79 .60% 88.20% R3.68%
F1-Score  55.14% 59.27% 70.97%  82.83% “ o 2 o GRC(wlo RA) ek 0> 407 8434
Precision  68.65% 66.82% 74.06% 77.50% n » " GRC(w/oTA)  76.54%  91.70%  83.44%
12,000 Recall 54.10% 59.20% 84.80%  95.50% R R R3S R Time slot] Time slot2 GRC 77.50% 95.50%  85.56%
F1-Score  60.51% 62.78% 79.07%  85.56% Time
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(a) Relation based Average Attention
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(b) Time based Average Attention
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