国际人工智能会议 AAAI 2021 论文北京预讲会

SDGNN: Learning Node Representation for Signed Directed Networks

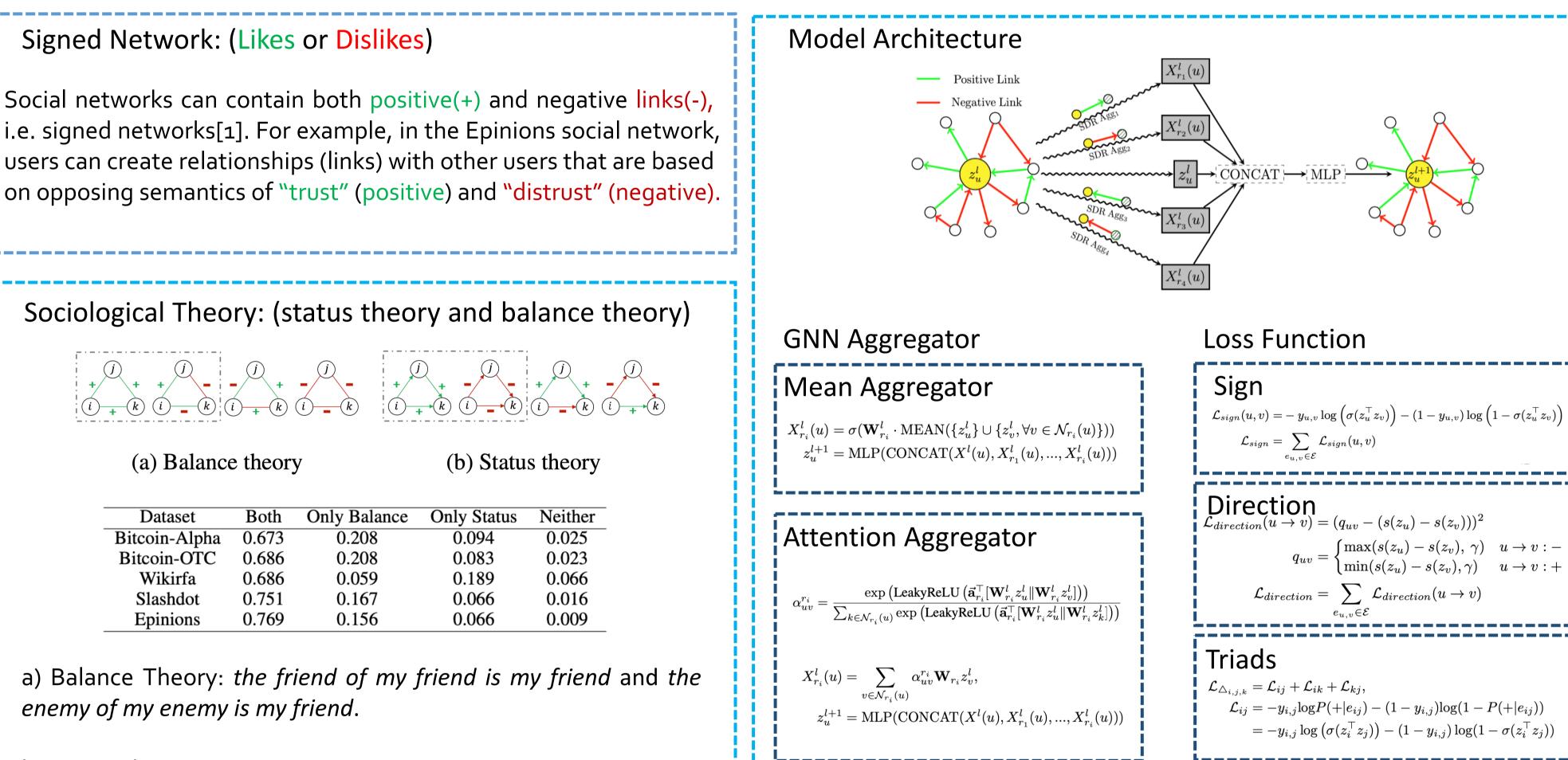
Junjie Huang, Huawei Shen, Liang Hou, Xueqi Cheng

CAS Key Laboratory of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Contact Author: Junjie Huang(huangjunjie17s@ict.ac.cn)

Introduction


Graph Neural Networks (GNNs) have received widespread attention and lead to state-of-the-art performance in learning node representations. In this paper, we first review two fundamental sociological theories (i.e., status theory and balance theory) and conduct empirical studies on real-world datasets to analyze the social mechanism in signed directed networks. Guided by related sociological theories, we propose a novel Signed Directed Graph Neural Networks model named SDGNN to learn node embeddings for signed directed networks. The proposed model simultaneously reconstructs link signs, link directions, and signed directed triangles. Experiments demonstrate the proposed model outperforms existing models, including feature-based methods, network embed- ding methods, and several GNN methods.

Background

Methods

b) Status Theory: B is A's friend and B has a higher status than A.

Experiments

Dataset

Wikirfa

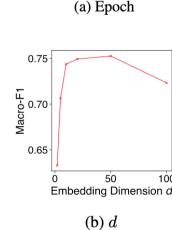
Slashdot

Epinions

atasets		Statistics of five datasets.										
		D	ataset	# nodes	# pos	links	# neg link	s % p	os ratio			
			in-Alpha	3,783	22,6		1,536		3.65			
			oin-OTC	5,881	32,0		3,563		9.99			
			ïkirfa	11,259	138,		39,283		7.94			
			ashdot	82,140	425,		124,130		7.40			
			inions	131,828	717,		123,705		5.30			
esults			TI	he results c	of link si	gn prec	diction on f	ìve data	sets.			
		Random	Unsigned	Network Eml	bedding	Signed	l Network Em	bedding	Feature Engineering	Grap	h Neural N	Network
Dataset	Metric	Random	Deepwalk	Node2vec	LINE	SiNE	SIGNet	BESIDE	FeExtra	SGCN	SiGAT	SDGN
	Micro-F1	0.9367	0.9367	0.9355	0.9352	0.9458	0.9422	0.9489	0.9486	0.9256	0.9456	0.94
Bitcoin-Alpha	Binary-F1	0.9673	0.9673	0.9663	0.9664	0.9716		0.9732	<u>0.9730</u>	0.9607	0.9714	0.97
Dicom rupiu	Macro-F1 AUC	0.4837 0.6146	0.4848 0.6409	0.6004 0.7576	$0.5220 \\ 0.7114$	0.6869	0.6965 0.8908	<u>0.7300</u> 0.8981	$0.7167 \\ 0.8882$	0.6367 0.8469	$0.7026 \\ 0.8872$	0.73 0.89
	Micro-F1	0.9000	0.8937	0.9089	0.8911	0.9095		0.9320	0.8882	0.9078	0.9268	
	Binary-F1	0.9000	0.8937	0.9089	0.8911	0.9095		0.9320	0.9561	0.9078	0.9268	<u>0.93:</u> 0.964
Bitcoin-OTC	Macro-F1	0.9473	0.5281	0.6793	0.5968	0.6805		0.9028 0.7843	0.7826	0.7306	0.9002	0.90
	AUC	0.6145	0.6596	0.7643	0.7248	0.8571	0.8935	0.9152	0.9121	0.8755	0.9055	0.91
	Micro-F1	0.7797	0.7837	0.7814	0.7977	0.8338	0.8384	0.8589	0.8346	0.8489	0.8457	0.86
Wikirfa	Binary-F1	0.8762	0.8779	0.8719	0.8827	0.8972	0.9001	0.9117	0.8987	0.9069	0.9042	0.914
vv ikii la	Macro-F1	0.4381	0.4666	0.5626	0.5738	0.7319		<u>0.7803</u>	0.7235	0.7527	0.7535	0.78
	AUC	0.5423	0.5876	0.6930	0.6772	0.8602	0.8682	0.8981	0.8604	0.8563	0.8829	0.88
	Micro-F1	0.7742	0.7738	0.7526	0.7489	0.8265	0.8389	<u>0.8590</u>	0.8472	0.8296	0.8494	0.86
Slashdot	Binary-F1	0.8728	0.8724	0.8528	0.8525	0.8918		<u>0.9105</u>	0.9070	0.8926	0.9055	0.912
	Macro-F1	0.4364	0.4384	0.5390	0.5052	0.7273	0.7554	0.7892	0.7399	0.7403	0.7671	0.78
	AUC	0.5370	0.5408	0.6709	0.6145	0.8409		0.9017	0.8880	0.8534	0.8874	0.897
	Micro-F1	0.8525	0.8214	0.8563	0.8535		0.9113	0.9336	0.9226	0.9112	0.9293	0.93
		0.9204	0.9005	0.9170	0.9175			<u>0.9615</u>	0.9561	0.9486	0.9593	0.962
Epinions	Binary-F1											
Epinions	Binary-F1 Macro-F1 AUC	0.9204 0.4602 0.5589	0.5131 0.6702	0.6862 0.8081	$0.6305 \\ 0.6835$			<u>0.8601</u> 0.9351	0.8130 0.9444	0.8105 0.8745	0.8454 0.9333	0.86 2 0.942

Ablation Study & Parameter Analysis

Ablation study on different aggregators.


Metric	2-Layer-GAT-AGG	1-Layer-GAT-AGG	2-Layer-MEAN-AGG	1-Layer-MEAN-AGG
Micro-F1	0.9446	0.9442	0.9415	0.9399
Binary-F1	0.9706	0.9703	0.9689	0.9679
Macro-F1	0.7510	0.7516	0.7417	0.7411
AUC	0.9154	0.9095	0.9041	0.9000

2 0.6

 $q_{uv} = \begin{cases} \max(s(z_u) - s(z_v), \gamma) & u \to v: -\\ \min(s(z_u) - s(z_v), \gamma) & u \to v: + \end{cases}$

Ablation study on loss functions.

Metric	$\mid \mathcal{L}_{sign}$	$\mathcal{L}_{sign} + \mathcal{L}_{direction}$	$\mathcal{L}_{sign} + \mathcal{L}_{triangle}$	$\mathcal{L}_{sign} + \mathcal{L}_{direction} + \mathcal{L}_{triangle}$
Micro-F1	0.9386	0.9438	0.9415	0.9475
Binary-F1	0.9677	0.9702	0.9690	0.9721
Macro-F1	0.6738	0.7414	0.7210	0.7585
AUC	0.8883	0.9082	0.9030	0.9109

References:

[1] Huang, Junjie, et al. "Signed graph attention networks." ICANN, 2019. [2] Chen, Yiqi, et al. "" Bridge" Enhanced Signed Directed Network Embedding." CIKM, 2018. [3] Leskovec, Jure, Daniel Huttenlocher, and Jon Kleinberg. "Predicting positive and negative links in online social networks." WWW, 2010.

主办方: 中国中文信息学会青年工作委员会 承办方: 智源社区