Unsupervised Learning of Deterministic Dialogue Structure with Edge Graph Auto-Encoder

Yajing Sun¹, Yong Shan², Chengguang Tang³, Yue Hu¹, YinPei Dai⁴, Jing Yu¹, Jian Sun¹, Fei Huang¹, Luo Si¹
¹IE/CAS, ²ICT/CAS, ³Alibaba Group

1. Motivation and Contribution

- **Task Description**
 Task-oriented dialogue usually follows a typical dialogue flow, which can be summarized as a dialogue structure. It describes internal logical structures of specific dialogue scenarios.

- **Traditional Works**
 First extracting latent states for each utterance and then calculating the transition probabilities among states.

- **How to discover the dialogue structure from dialogue corpora automatically?**
 - An unsupervised Edge Graph Auto-Encoder (EGAE) is designed to model local-contextual and global-structural information for conversational graph learning.

2. CG Initialization

- **Algorithm 1: Conversational Graph Initialization**
 - **Input:**
 - number of user nodes \(N_u \)
 - number of system nodes \(N_s \)
 - dialogue corpus \(D \)
 - **Output:**
 - features of user nodes \(u_1, \ldots, u_{N_u} \)
 - features of system nodes \(s_1, \ldots, s_{N_s} \)

3. Experiment and Result

- **Main Result**
 - Compared with existing methods
 - Performance in different domains

- **Few-Shot DST Task**
 - A conversational graph (CG) with edge feature can model a deterministic transition in a specific context.
 - The ablation study shows that EGAE and response selection task promote dialogue structure learning.

4. Conclusion

- **Conclusion**
 - A conversational graph (CG) with edge feature can model a deterministic transition in a specific context.
 - In the future, we will explore a more effective way to model complex transition relationships in the conversational graph.