国际人工智能会议 AAAI 2021 论文北京预讲会

Benchmarking Knowledge-Enhanced Commonsense Question Answering via Knowledge-to-Text Transformation Ning Bian, Xianpei Han, Bo Chen, Le Sun Institute of Software, Chinese Academy of Sciences, Beijing, China

1. Introduction

Commonsense Question Answering (CQA): Answering questions whose answers rely on commonsense knowledge.

Try to Answer Three Important Questions:

Q1: How far can we get by exploiting external knowledge for CQA?

Q2: How much potential of knowledge has been exploited in current CQA models?

Q3: Which are the most promising directions for future CQA?

2. Knowledge-to-Text CQA Model

Answer to Q1: By incorporating golden external knowledge, CQA can be significantly improved and can achieve close-to-human performance.

3. Benchmarking Experiments

Answer to Q2: The potential of knowledge is still far from being fully exploited by current knowledgeenhanced CQA methods:

1) Current knowledge-enhanced CQA methods only exploit knowledge to a limited extent.

2) Despite the effectiveness of our method, there is still great potential in generating accurate question-relevant knowledge descriptions.

3) The commonsense knowledge embedded in current pretrained language models is still not enough for CQA.

i l					
	Models	WSC	HellaSWAG	SOCIAL IQa	←
_ '	BERT	66.0	42.3	66.2	Accuracies
	+Knowledge	68.1	44.2	68.8	on other
	RoBERTa	81.4	82.5	74.3	COA
n	+Knowledge	82.5	83.0	75.0	datasets
	ALBERT	84.9	86.1	77.2	aatabetb
	+Knowledge	87.0	86.9	77.8	
	Human	92.1	94.5	86.9	
X	KLNet Ro	BERTa	ALBERT	1	
	88.0	<u> </u>	88.0	T7 1 1	

Model	Knowledge Source	BERT	XLNet	RoBERTa	ALBERT	
Human		88.9	88.9	88.9	88.9	Knowledge-to-text
Golden Knowledge	Human Explanations	81.1	85.1	84.7	83.7	transformation is
Knowledge-to-Text				effective and		
Template-based	ConceptNet	67.9	77.5	78.1	81.1	robust for
Paraphrasing-based	ConceptNet	67.2	74.9	77.8	79.3	knowledge-
Retrieval-based	ConceptNet	65.0	75.0	77.1	79.4	enhanced CQA.
Full	ConceptNet	70.4	80.3	80.8	83.3	
Best Knowledge-enhanced	ConcentNet	69.0	79.3	80.8	(No available	\leftarrow Accuracies on
System with Different PLM	Conceptivet	(Ma et al. 2019)	(Lv et al. 2019)	(KEDGN)	model so far)	
Base Model	No knowledge	63.6	68.9	76.2	78.6	CommonsenseQA

4. Conclusions (Answer to Q3)

(1) Context-sensitive knowledge selection is critical for knowledge-enhanced CQA. (2) The knowledge-text heterogeneity is a critical bottleneck for exploiting the information from both knowledge and text.

(3) It is valuable to incorporate more commonsense in pretrained language models.

Email: bianning2019 @iscas.ac.cn

主办方: 中国中文信息学会青年工作委员会 承办方: 智源社区