国际人工智能会议 AAAI 2021 论文北京预讲会

TSQA: Tabular Scenario Based Question Answering Xiao Li, Yawei Sun, Gong Cheng State Key Laboratory for Novel Software Technology, Nanjing University, China {xiaoli.nju, ywsun}@smail.nju.edu.cn, gcheng@nju.edu.cn

Task and Dataset

Task:

• Answering questions which contextualized by a scenario consisting of a textual passage and a set of tables

Challenges:

- Properly manipulating tabular data to obtain deep-level tabular information
- Reading comprehension with fusion of tabular data and textual information

Construction	
Collecting Questions	Identifying Tables
Filtering Questions	Extracting Tables
• Statistics	
Scenarios Chinese characters per passage	
Tables per scenario	1.58 ± 0.93

Example:

(Scenario) The educational level on products (ELP) refers to the average educational level of workers that produce products. To compute it, educational stages are quantified as follows: 1 for lower secondary or below, 3 for higher secondary, 5 for junior college, 7 for undergraduate, and 9 for graduate or above. The following table shows the development of ELP in China. Please read the table and answer the auestion.

Year	 1998	1999	2000	2001	2002	2003
ELP	 2.465	2.476	2.504	2.490	2.482	2.473

Contributions:

- GeoTSQA: the first dataset dedicated to TSQA, posing new research challenges
- TTGen: extending machine reading comprehension methods with our table to text model TTGen to solve TSQA

Cells per table	26.98	± 17.51
Questions	1,012	
Chinese characters per question	44.02	± 15.89

• Features:

Dataset:

- Table information is needed for QA
- Most of tables (96%) are numeric

(Question) The main reason for the change of ELP after year 2000 is (A) improvement in the quality of education (B) industrial upgrading (C) rural labor migration (D) counterurbanization

Approach

Approach:

- **TTGen:** a table-to-text generator
 - Sentence generation: we use six table-to-text templates to encapsulate different powerful operations for synthesizing numeric tabular data
 - Sentence Ranking: we get a set of table sentences \widehat{S} and only a subset of \widehat{S} is useful for answering question, we use K-BERT (Liu et al., 2020) for ranking

- Machine reading comprehension with top-k \widehat{S} •
 - $\boldsymbol{h}_{i}^{MRC} = \text{K-BERT}(question, option, domain knowledge, topk \hat{S})$
 - The final of a candidate option is scored by h_i^{MRC} with a multi-layer perceptron (MLP)

Accuracy

Experiments

Evaluation Design:

- Experiments on GeoTSQA
- We extend sota table-to-text method with MRC model
- SOTA Table-to-text Methods
 - Table-Infusing (Chen et al., 2020): encode table cells and then generate
 - GPT-Linearization (Chen et al., 2020): describe all cells of table and feed the GPT-2 with table passage to generate
 - Coarse-to-Fine (Chen et al., 2020): first generate template and then fill out template
 - Linearization: describe all cells of table into a passage
 - Templation: concatenate all sentences of \widehat{S} into a table passage

Results on GeoTSQA		Results on GeoTSQA		
Field-Infusing GPT-Linearization Coarse-to-Fine GPT-Linearization ⁺ Coarse-to-Fine ⁺ Linearization Templation TTGen Gold-Standard Sentence	Accuracy 0.353 • 0.370 0.367 0.348 • 0.359 ° 0.235 • 0.243 • 0.243 • 0.397 0.418	(ablation study) TTGen TTGen w/o tabular data TTGen w/o domain knowledge	Accura 0.397 0.372 0.380	

Results on GeoTSQA by varying k (top-k subset of \widehat{S})

	k = 1	k = 2	k = 3	k = 4	k = 5
Accuracy	0.390	0.397	0.352	0.343	0.330

		\bullet
Error	ana	VSIS!

- Lack of external knowledge base (76%)
- Weak Reasoning Capabilities (62%)
- Sentence Ranking Error (54%)

Conclusion:

• We constructed the first TSQA dataset: GeoTSQA. We use six templates encapsulating predefined operations for synthesizing tabular and then select the most useful sentences. At last, we use MRC model, fusing scenario passage, question, table information and domain knowledge to select answer.

Resources: <u>https://github.com/nju-websoft/TSQA</u>

主办方: 中国中文信息学会青年工作委员会 承办方: 智源社区