国际人工智能会议 AAAI 2021 论文北京预讲会

Unsupervised Sampling Approach for Image-Sentence Matching Using Document-Level Structural Information

Zejun Li¹, Zhongyu Wei¹, Zhihao Fan¹, Haijun Shan², Xuanjing Huang¹ 1 Fudan University, China, 2 Zhejiang Lab, China

Cross-Modality Alignment Model

Learning to align semantic spaces of vision and text (a) mainly follows *contrastive learning*, requiring information to find matched positive pairs (red links) and negative pairs (blue link). Most works are supervised (b) with *labeled pairs* (solid links), while some unsupervised methods (c) explore to utilize document-level information to sample *pseudo pairs* (dashed links). Relatively similar *intra-document pairs* are considered positive and *cross-document* pairs are negative samples, introducing a *sampling bias* since cross-document pairs are relatively semantically dissimil ar and easy negative samples. We propose strategies to efficient ly sample more positive/negative intra-document pairs, and a Tr a-nsformer based model to capture fine-grained features, where "concepts" are introduced to bridge the cross-modal representation learning in the context of a document.

Unsupervised Sampling Strategy based on Document-Level Structure

A transformer based model is proposed to learn well-aligned cross-modality representations, we enable it to capture fine-grained features and bridge representation learning of images and sentences:

- Visual objects are extracted by Faster RCNN, their corresponding labels are considered "concepts".
- Concepts and tokens share the same embedding layer to encode conceptually semantic information.
- A densely connected graph between concepts and objects is constructed by Transformer.
- Mean pooling is used to extract overall image/sentence representations.

Experiment & Results

> Overall Performance

	MSCOCO		Story-DII		Story-SIS	
	AUC	p@1/p@5	AUC	p@1/p@5	AUC	p@1/p@5
Obj Detect	89.5	67.7/45.9	65.3	50.2/35.2	58.4	40.8/28.6
NoStruct	87.4	50.6/34.3	77.0	60.8/46.3	64.5	42.8/33.2
MulLink	99.0	95.0/81.1	82.9	72.0/55.8	68.8	51.8/38.6
Ours	99.3	97.6/86.0	85.5	77.2/60.1	70.2	53.1/39.8

Overall Performance: Obj Detect and NoStruct are baslines, MulLink is the only existing unsupervised model.

• Evaluation on the task of unsupervised multi-image multi-sentence linking among a document: our method shows a superior performance.

> Further Analysis

Objectives	AUC	p@1/p@5
C+I+D	85.5	77.2/60.1
C+I+D	85.3	75.8/59.8
C+I+D	85.1	75.0/59.0
C+I+D	85.1	74.6/59.1
C+I+D	84.0	72.9/58.0
C+I	85.2	75.9/59.2
C+D	85.4	76.2/59.9
I+D	84.1	73.4/57.8
	C+I+D C+I+D C+I+D C+I+D C+I+D C+I+D C+I C+I C+D	C+I+D85.5C+I+D85.3C+I+D85.1C+I+D85.1C+I+D84.0C+I85.2C+D85.4

We introduce 3 training objectives, correspond to 3 strategies to sample positive and negative image-sentence pairs:

- Cross-document Objective "C":
 - Positive: the most similar intra-document pairs
 - Negative: the most similar cross-document pairs
- Intra-document Objective "I":
 - Positive: the most similar intra-document pairs
 - Negative: the most dissimilar intra-document pairs
- Dropout Sub-Document Objective "D":
 - Randomly mask some imgs/sents \rightarrow sub-document
 - Positive: the most similar pairs intra sub-documents
 - Negative: the most similar cross-document pairs
- Combined objectives → aggregated sample pairs

9 Ours	C	85.0	75.5/59.4

Ablation Study on DII: C, I, and D correspond to 3 objectives, diff e-rent combinations used during training, T is short for Transformer. 0.0 0.2 0.4 0.6 0.8 1.0 Proportion of Training Set Used

Comparison with supervised methods (blue)

- Ablation study shows the effectiveness of modules of our alignment model and 3 parts of training objectives (sampled image-sentence pairs).
- Compared with supervised methods, we are able to utilize more information under the unsupervised setting.

Case Study

• Green/purple links are matched/unmatched pairs in ground truth, line widths are proportional to predicted similarities.

