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Unsupervised Sampling Approach for Image-Sentence Matching
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images sentences images sentences A transformer based model is proposed to learn well-aligned cross-modality re-
Learning to align semantic spaces of vision and text (a) mainly f- presentations, we enable it to capture fine-grained features and bridge repres-
ollows contrastive learning, requiring information to find matc- entation learning of images and sentences:
hed positive pairs (red links) and negative pairs (blue link). Most * Visual objects are extracted by Faster RCNN, their corresponding labels are c-
works are supervised (b) with labeled pairs (solid links), while s- onsidered “concepts”.
ome unsupervised methods (c) explore to utilize document-level * Concepts and tokens share the same embedding layer to encode conceptual-
information to sample pseudo pairs (dashed links). Relatively si- ly semantic information.
milar intra-document pairs are considered positive and cross-d- * A densely connected graph between concepts and objects is constructed by
ocument pairs are negative samples, introducing a sampling bi- Transformer.
as since cross-document pairs are relatively semantically dissimil * Mean pooling is used to extract overall image/sentence representations.
ar and easy negative samples. We propose strategies to efficient _
ly sample more positive/negative intra-document pairs, and a Tr Experiment & Results

a-nsformer based model to capture fine-grained features, where
“concepts” are introduced to bridge the cross-modal represent-
ation learning in the context of a document.

> Overall Performance

MSCOCO Story-DII Story-SIS
AUC p@l/p@5 AUC p@l1/p@5 AUC p@l1/p@5
Obj Detect | 89.5  67.7/450 653 50.2/352 584  40.8/28.6

Unsupervised Sampling Strategy NoStruct 874 50.6/343 77.0 60.8/46.3 645 42.8/33.2
based on Document-l_evel Structure MulLink 99.0 05.0/81.1 82.9 72.0/55.8 638.8 51.8/38.6
Ours 99.3 97.6/86.0 855 77.2/60.1 70.2 53.1/39.8
------ » Lintra L, - . Lg;tgss Overall Performance: Obj Detect and NoStruct are baslines, MulLink is the only existing unsupervised model.
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- + * ng among a document: our method shows a superior performance.
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NIIOTH SAMPHNE 10T HMages CHIEnees Ablation Study on DII: C, I, and D correspond to 3 objectives, diff

Y : __ ) Comparison with supervised methods (blue)
e-rent combinations used during training, T is short for Transformer.

We introduce 3 training objectives, correspond to 3 strate-
gies to sample positive and negative image-sentence pairs: * Ablation study shows the effectiveness of modules of our alignment mo-

et del and 3 parts of training objectives (sampled image-sentence pairs).
* Cross-document Objective “C”:

 Compared with supervised methods, we are able to utilize more inform-
ation under the unsupervised setting.

* Positive: the most similar intra-document pairs
* Negative: the most similar cross-document pairs
* Intra-document Objective “I”:

* Positive: the most similar intra-document pairs

* Negative: the most dissimilar intra-document pairs

. . -;.
* Dropout Sub-Document Objective “D”: e
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Positive: the most similar palrs Intra sub-documents (a) SIS; 76 AUC; Concepts: chair, pillow, computer, table, light  (b) DII; 87 AUC; Concepts: umbrella, man, hat, hand, paper

* Negative: the most similar cross-document pairs * Green/purple links are matched/unmatched pairs in ground truth, line widt-

 Combined objectives = aggregated sample pairs hs are proportional to predicted similarities.
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