国际人工智能会议 AAAI 2021论文北京预讲会

Curriculum-Meta Learning for Order-Robust Continual Relation Extraction

Authors:

Tongtong Wu, Xuekai Li, Yuan-Fang Li, Reza Haffari, Guilin Qi

Yujin Zhu, Guoqiang Xu

Repoter: Xuekai Li

2020-12-18

Relation Extraction

unstructured text

structured facts triples

Continual Relation Extraction

Catastrophic Forgetting

Catastrophic Forgetting

When a neural network is utilized to learn a sequence of tasks, the learning of the later tasks may degrade the performance of the learned model for the previous tasks.

Order-sensitivity

The performance of the tasks vary based on the order of the task arrival sequence.

- CF incurred by the different sequences of previous tasks
- the unidirectional knowledge transfer from the previous tasks.

- (i) Ethical AI considerations in continual learning, e.g. fairness in the medical domain [Yoon et al. 2020];
- (ii) Benchmarking of continual learning algorithms as most of the existing works pick an arbitrary and random sequence of the given tasks for the evaluation [Chen et al. 2018];
- (iii) Uncertainty to the quality of extracted knowledge in the realistic scenario for knowledge base population, where the model is faced with only one sequence. 7

1.3 Our Contribution

Three Contributions:

- A novel curriculum-based continual learning method tackling the order-sensitivity and catastrophic forgetting problems in continual relation extraction.
- A new relation representation learning method via the conceptual distribution of domain and range of relations
- Comprehensive experiments to analyze the order-sensitivity and catastrophic forgetting problems in state-of-the-art models

Continual Learning

GEM [Lopez-Paz et al. 2017] Experience Replay-based Model

EWC [Kirkpatrick et al. 2016] Weight Consolidation-based Model

- R-EWC [Liu et al. 2016]

Continual Relation Extraction EA-EMR [Wang et al. 2019] MLLRE [Obamuyide et al. 2019] EMAR [Han et al. 2020]

3.2 Framework

2020-12-18

Unlabelled Data Labelled Data Available to Model for Learning Labelled Data Available to Model for Learning Learner Model
Learning Phase
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
4 2 $Curriculum Set 1$ $C_1 = \{x_{C_1}, y_{C_1}\}$
Evaluation Phase
$\mathcal{T} \xrightarrow{\text{Target Set}} f(\mathcal{M}_N) \xrightarrow{\text{Model}} L\left(f\left(x_T, \theta^N\right), y_T\right)$
CML

Meta-Training

Conventional Machine Learning:

Meta-Training

2020-12-18

Curriculum-based Memory Replay

1. Assessing the difficulty of tasks.

2. Sampling instances from the memory.

3. Ranking the sampled instances by a certain strategy, inducting the model to learn the bias between the current task and observed similar tasks.

3.4 Knowledge-based Curriculum

KB-C

Difficulty Function:

 $DI_{i} := \frac{1}{K-1} \sum_{i=1:i \neq i}^{K} S_{i}^{j}$

 \cap

 T_i

 $S_i^j = \frac{1}{M \times N} \sum_{m=1}^M \sum_{n=1}^N s_m^n$

s^{n/}

T_j

3.4 Knowledge-based Curriculum

KB-C

Representation Function:

$$\dot{m}_{\phi} \ \mathbb{1}(\phi, \mathbb{G}) = \dot{m} \sum_{(h', t'; r) \in \mathbb{G}} \left[-\log P_{\phi}(h'|r) - \log P_{\phi}(t'|r) \right]$$

 $P_{\phi}(\mathbf{h}'|r)$ $P_{\phi}(t'|r)$

3.4 Knowledge-based Curriculum

KB-C

Sampling Strategy:

current task.

mea T

mea T³

٠

 θ_0

.....

Select and sort memory-stored

 θ_0^{2}

 θ_0^{3*}

instances of the most similar relations to

 θ_2

 $\theta_{t+1} = \theta + \epsilon \frac{1}{n} \sum_{i=0}^{n} (\theta_t^{i*} - \theta_t)$

 θ_1

Baselines

- Vanilla Model [Yu et al. 2017]
- EA-EMR [Wang et al. 2019]
- MLLRE [Obamuyide et al. 2019]
- EMAR [Han et al. 2020]

Benchmarks [Wang et al. 2019]

Lifelong - Fewrel: 80 relations and 700 instances per relation. Lifelong - SimpleQuestions: 1,785 relations and totally 72,238 instances. Lifelong - Tacred: 42 relations and totally 21,784 instances.

The average accuracy Acc_a and whole accuracy Acc_w , with error bounds *EB*, on the test sets of observed tasks at the final time step.

Matriaa				Continua	l-FewR	el		Continua	l-Simp	Q	C	D		
Metrics:			Acc_w		$ $ Acc_a		$ Acc_w$		Acc_a		Acc_w		Ac	cc_a
	Setting	Model	Acc	EB	Acc	EB	Acc	EB	Acc	EB	Acc	EB	Acc	EB
		Vanilla‡	16.3	± 4.10	19.7	± 3.90	60.3	± 2.52	58.3	± 2.30	12.0	± 3.21	8.7	± 2.35
$Acc_{w} = acc_{f, \mathcal{D}_{st}}$	Chuster	EWC† AGEM†	27.1 36.1	± 2.32 ± 2.51	30.2 42.5	$\pm 2.10 \\ \pm 2.63 \\ \pm 1.20$	67.2 77.6	± 3.16 ± 2.11	59.0 72.2	$\pm 2.20 \\ \pm 2.72 \\ \pm 0.22$	14.5 12.5	± 2.51 ± 2.24	14.5 16.5	$\pm 2.90 \\ \pm 2.20 \\ \pm 1.17$
, loow acct, lotet	Cluster	EA-EMR‡ EMAR†	59.8 53.8	$\pm 1.50 \\ \pm 1.30$	74.8 68.6	$\pm 1.30 \\ \pm 0.71$	82.7 80.0	$\pm 0.48 \\ \pm 0.83$	86.2 76.9	$\pm 0.33 \\ \pm 1.39$	17.8 42.7	$\pm 1.01 \\ \pm 2.92$	25.4 52.5	$\pm 1.17 \\ \pm 1.74$
$1 \frac{k}{\Sigma}$		MLLRE CML (ours)	56.8 60.2	±1.30 ± 0.71	70.2 76.0	$\pm 0.93 \\ \pm 0.24$	84.5 85.6	$\pm 0.35 \\ \pm 0.34$	86.7 87.5	$\pm 0.46 \pm 0.32$	34.4 44.4	± 0.49 ±1.16	41.2 49.3	$\pm 1.37 \pm 1.01$
$Acc_a: = \frac{1}{k} \sum_{i=1}^{k} acc_{f, \mathcal{D}_{tet}}$		Vanilla‡ EWC†	19.1 30.1	$_{\pm 1.20} _{\pm 1.07}$	19.3 30.2	$\pm 1.30 \\ \pm 1.05$	55.0 66.4	$\pm 1.30 \\ \pm 0.81$	55.2 66.7	$_{\pm 0.83}^{\pm 1.30}$	10.2	$\pm 2.02 \\ \pm 1.70$	10.4 15.4	$\pm 2.31 \\ \pm 1.79$
2	Random	AGEM† EA-EMR‡	36.9 61.4	$\pm 0.80 \\ \pm 0.81$	37.0 61.6	$\pm 0.83 \\ \pm 0.76$	76.4 83.1	$\pm 1.02 \\ \pm 0.41$	76.7 83.2	$\pm 1.01 \\ \pm 0.47$	13.4 27.3	$\pm 1.47 \\ \pm 1.01$	14.3 30.3	$\pm 1.62 \\ \pm 0.70$
$EB: = Z_{\frac{a}{2}} \times \frac{o}{\sqrt{n}}$	Kanuom	EA-EMR _‡ EMAR† MLLRE	62.7 59.8	± 0.81 ± 0.63 ± 0.91	62.8 59.8	$\pm 0.76 \\ \pm 0.62 \\ \pm 0.94$	82.4 85.2	± 0.41 ± 0.86 ± 0.25	83.2 84.0 85.5	$\pm 0.47 \\ \pm 0.78 \\ \pm 0.31$	45.1 36.4	± 1.01 ± 1.48 ± 0.66	46.4 38.0	$\pm 0.70 \\ \pm 2.00 \\ \pm 0.58$
<u></u> 2 √n		CML (ours)	62.9	± 0.91 ± 0.62	63.0	±0.59	86.5	± 0.23 ± 0.22	85.5 86.9	± 0.31 ± 0.28	43.7	± 0.83	45.3	± 0.38 ± 0.72

A case study of EA-EMR, MLLRE and Our CML on the FewRel dataset.

taskID	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9			taskID	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9		
runID	0	1	2	3	4	5	6	7	8	9	$ ^{Acc_a}$	Acc_w	runID	0	1	2	3	4	5	6	7	8	9	$ ^{Acc_a}$	Acc_w
P_0	93.3	36.7	61.7	57.7	100.0	26.5	35.7	58.1	54.1	50.6	76.0	60.9	P0	88.1	39	49.9	59.9	100	23.8	28.2	48.5	52.6	53.9	76.8	62.7
P_1	91.9	42.4	62.5	64.6	99.3	24.5	60.3	56.2	62.2	61.8	74.0	61.7	P1	82.2	43.5	68.8	33.9	100	30.7	56.7	39.6	71.1	59	73.4	63.9
P_2	92.6	42.7	60.6	66.1	100.0	25.8	55.4	69.3	71.1	54.5	73.6	61.3	P2	83	49.9	66.7	75.9	100	26.7	57.4	74.7	58.5	64.1	72.6	61.2
P_3	93.3	39.2	68.4	60.2	100.0	34.0	57.3	71.4	85.2	58.3	74.9	63.4	$\mathbf{P3}$	91.9	48.3	76.3	77	100	23.2	54.3	77	83.7	50.6	62.8	59
P_4	89.6	34.4	64.0	59.9	100.0	35.1	65.8	71.0	77.8	72.5	75.6	55.8	P4	90.4	44.1	73.6	79.6	100	43.5	47.5	69.6	86.7	77.6	77.7	58.4
P_5	91.1	60.9	56.9	64.2	99.3	45.7	77.9	77.1	67.4	79.9	75.1	58.3	P5	97	42.8	71.2	79.9	100	46	74.9	68.5	80	76.8	79.5	61.6
P_6	94.1	66.9	72.1	55.5	100.0	53.0	77.2	74.3	84.4	74.0	74.5	59.2	P6	98.5	79.2	69.3	75.5	100	52.4	82.6	88.1	88.1	80.4	74.6	58.7
P_7	94.8	73.6	85.4	53.6	98.6	61.6	80.4	81.5	92.6	86.5	76.0	62.0	$\mathbf{P7}$	97	80.2	92.1	67.9	100	57.1	81.9	87.6	93.3	81.4	67.4	56.3
P_8	94.8	74.6	85.2	85.0	98.6	69.1	79.3	75.2	87.4	92.9	74.2	54.5	P8	91.9	81.5	91.9	92.7	99.3	68	86.1	93.4	92.6	90.8	77.4	56.1
P_9	91.1	76.9	91.3	89.4	97.9	65.4	77.6	83.9	93.3	85.8	76.1	58.9	P9	100	89.7	97.4	96	100	82.1	91.9	94.7	99.3	93.1	77.7	58.7
μ	92.7	54.8	70.8	65.6	99.4	44.1	66.7	71.8	77.6	71.7	75.00	59.60	$-\mu$	92	59.8	75.7	73.8	99.9	45.4	66.2	74.2	80.6	72.8	74	59.7
δ	1.73	17.34	12.22	12.09	0.77	17.25	14.61	8.97	13.36	14.75	0.91	2.83	δ	6.25	20.06	14.39	17.51	0.22	19.92	20.41	18.50	15.35	14.99	5.26	2.61

CML

EA-EMR

A case study of EA-EMR, MLLRE and Our CML on the FewRel dataset.

taskID	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	Ι.		taskID	$\mid T_0$	T_1	T_6	T_3	T_4	T_5	T_6	T_7	T_8	T_9		
runID	0	1	2	3	4	5	6	7	8	9	$ ^{Acc_a}$	Acc_w	runID	0	1	2	3	4	5	6	7	8	9	$ ^{Acc_a}$	Acc_w
P_0	93.3	36.7	61.7	57.7	100.0	26.5	35.7	58.1	54.1	50.6	76.0	60.9	P_0	83.0	44.1	48.8	53.6	100.0	25.9	49.8	52.7	63.0	54.7	74.8	59.7
P_1	91.9	42.4	62.5	64.6	99.3	24.5	60.3	56.2	62.2	61.8	74.0	61.7	P_1	91.9	39.0	51.0	62.4	100.0	25.6	61.4	60.7	48.1	53.9	75.3	60.3
P_2	92.6	42.7	60.6	66.1	100.0	25.8	55.4	69.3	71.1	54.5	73.6	61.3	P_2	94.1	43.5	62.3	70.4	100.0	23.8	56.2	70.0	72.6	44.0	71.0	60.9
P_3	93.3	39.2	68.4	60.2	100.0	34.0	57.3	71.4	85.2	58.3	74.9	63.4	P_3	84.4	49.7	72.8	62.4	100.0	31.1	58.9	71.5	80.0	62.6	72.4	62.6
P_4	89.6	34.4	64.0	59.9	100.0	35.1	65.8	71.0	77.8	72.5	75.6	55.8	P_4	97.0	46.1	62.3	80.7	100.0	31.7	63.2	68.0	70.4	78.1	75.5	56.5
P_5	91.1	60.9	56.9	64.2	99.3	45.7	77.9	77.1	67.4	79.9	75.1	58.3	P_5	95.6	53.3	59.5	75.5	100.0	45.2	68.0	80.4	70.4	72.5	76.1	57.7
P_6	94.1	66.9	72.1	55.5	100.0	53.0	77.2	74.3	84.4	74.0	74.5	59.2	P_6	95.6	72.0	71.2	59.9	99.3	45.3	77.7	77.2	84.4	70.7	74.7	57.6
P_7	94.8	73.6	85.4	53.6	98.6	61.6	80.4	81.5	92.6	86.5	76.0	62.0	P_7	95.6	76.4	89.8	59.1	98.6	52.4	81.1	80.7	92.6	70.5	73.6	59.7
P_8	94.8	74.6	85.2	85.0	98.6	69.1	79.3	75.2	87.4	92.9	74.2	54.5	P_8	91.9	77.6	85.6	88.0	97.2	68.5	77.1	81.2	85.9	86.8	74.9	56.2
P_9	91.1	76.9	91.3	89.4	97.9	65.4	77.6	83.9	93.3	85.8	76.1	58.9	P_9	96.3	73.9	92.6	88.3	94.4	70.6	78.7	84.1	93.3	88.0	73.2	55.6
μ	92.7	54.8	70.8	65.6	99.4	44.1	66.7	71.8	77.6	71.7	75.00	59.60	μ	92.5	57.6	69.6	70.0	99.0	42.0	67.2	72.7	76.1	68.2	74.15	58.70
δ	1.73	17.34	12.22	12.09	0.77	17.25	14.61	8.97	13.36	14.75	0.91	2.83	δ	4.97	15.52	15.61	12.51	1.84	17.43	10.94	10.11	14.07	14.41	1.58	2.30

CML

MLLRE

Memory-Training Rate

Trai	in	10	00	200	all
Mem	ory	25	50	50	50
EA-EMR	$\begin{vmatrix} Acc_a \\ Acc_w \end{vmatrix}$	70.7 53.2	75.5 57.4	74.8 59.8	73.9 59.6
MLLRE	$\begin{vmatrix} Acc_a \\ Acc_w \end{vmatrix}$	68.4 51.9	72.1 57.8	70.2 56.8	51.0 47.3
EMAR	$\begin{vmatrix} Acc_a \\ Acc_w \end{vmatrix}$	60.1 43.7	66.7 51.2	68.6 53.8	74.1 57.7
CML	$\begin{vmatrix} Acc_a \\ Acc_w \end{vmatrix}$	73.6 54.7	76.4 60.3	76.0 60.2	58.0 49.1

Summary: The performance of CML is much better than MLLRE.

4.5 The effectiveness of KB-C

A New Metric

Average Forgetting Rate:

$$Fr_{ag}^{j} := \frac{1}{K-1} \sum_{i=1}^{K-1} \frac{\overline{ac}_{i+1}^{j} - \overline{ac}_{i}^{j}}{\overline{ac}_{i}^{j}}$$

$$\overline{ac}_{i}^{j} := \frac{1}{(J-1)!} \sum_{\pi \in \Pi_{[1,\ldots,J]} st_{\pi_{i}}=j} acc_{i}(\pi)$$

taskID	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9		
runID	0	1	2	3	4	5	6	7	8	9	$ ^{Acc_a}$	Acc_w
P_0	93.3	36.7	61.7	57.7	100.0	26.5	35.7	58.1	54.1	50.6	76.0	60.9
P_1	91.9	42.4	62.5	64.6	99.3	24.5	60.3	56.2		61.8	74.0	61.7
P_2	92.6	42.7	60.6	66.1	100.0	25.8	55.4	69.3	71.1			
P_3	93.3	39.2	68.4	60.2	100.0	34.0	57.3	71.4	85.2	58.3	74.9	63.4
P_4	89.6		64.0	59.9	100.0	35.1	65.8	71.0	77.8	72.5	75.6	55.8
P_5	91.1	60.9		64.2	99.3	45.7	77.9	77.1	67.4	79.9	75.1	58.3
P_6	94.1	66.9	72.1		100.0	53.0	77.2	74.3	84.4	74.0	74.5	59.2
P_7	94.8	73.6	85.4	53.6		61.6	80.4	81.5	92.6	86.5	76.0	62.0
P_8	94.8	74.6	85.2	85.0	98.6		79.3	75.2	87.4	92.9	74.2	54.5
P_9	91.1	76.9	91.3	89.4	97.9	65.4		83.9	93.3	85.8	76.1	58.9
'	92.7	54.8	70.8	65.6	99.4	44.1	66.7	71.8	77.6	71.7	75.00	59.60
δ	1.73	17.34	12.22	12.09	0.77	17.25	14.61	8.97	13.36	14.75	0.91	2.83

Average Forgetting Rate Fr ag is used to evaluate the actual difficulty of each task based on the final result. 26

Prior Difficulty:

$$D^{j}_{pio}$$
 : = $\frac{1}{K-1} \sum_{j=1; j \neq i}^{K} S^{j}_{i}$

Posterior Difficulty: D

$$D_{pot}^{i} := Fr_{ag}^{i};$$

		$\mid \mathcal{T}_0$	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3	\mathcal{T}_4	\mathcal{T}_5	\mathcal{T}_6	\mathcal{T}_7	\mathcal{T}_8	\mathcal{T}_9	$ PCC_s $
	D_{prior}	0.121	0.141	0.168	0.054	0.035	0.186	0.112	0.152	0.146	0.137	-
-	EA-EMR	0.060	0.098	0.061	0.028	0.001	0.137	0.139	0.060	0.044	0.051	0.559
D	MLLRE	0.022	0.078	0.091	0.085	-0.004	0.147	0.060	0.064	0.069	0.075	0.667
D_{post}	EMAR	0.036	0.016	0.027	0.007	0.006	0.016	0.008	0.026	0.020	0.005	0.499
	CML	-0.002	0.108	0.051	0.065	-0.002	0.113	0.108	0.046	0.070	0.068	0.470

Summary: domain/range-based relation similarity is positively related to the difficulty of the task; Our Kb-C module reduces the interference of similar tasks.

- A Task: Continual Relation Extraction;
- Two Problems: Catastrophic Forgetting & Order-Sensitivity;
- Two Factors: Over-Fitting & Task Similarity;
- Two Main Contribution: CML Framework and KB-C Module; Three Future Works.

[1] Yu et al.: Improved neural relation detection for knowledge base question answering. Proceedings of ACL. pp. 571–581 (2017)

[2] Wang et al.: Sentence embedding alignment for lifelong relation extraction. Proceedings of NAACL-HLT2019. pp. 796–806 (2019)

[3] Obamuyide et al.: Meta-learning improves lifelong relation extraction. Proceedings of RepL4NLP@ACL2019. pp. 224–229 (2019)

[4] Han et al.: Continual relation learning via episodic memory activation and reconsolidation . Proceedings of ACL2020. pp. 6429–6440 (2020)

[5] Yoon et al.: Scalable and order-robust continual learning with additive parameter decomposition. arXiv: Learning (2020)

[6] Chen, Z., Liu, B.: Lifelong Machine Learning. Morgan & Claypool Publishers (2016)

[7] Lopez-Paz et al.: Gradient episodic memory for continual learning. Proceedings of NeurIPS2017. pp. 6467–6476 (2017)

[8] Kirkpatrick et al.: Overcoming catastrophic forgetting in neural networks. CoRR abs/1612.00796 (2016)[9] Liu et al.: Rotate your networks: Better weight consolidation and less catastrophic forgetting. Proceedings of ICPR. pp. 2262–2268 (2018) 国际人工智能会议 AAAI 2021论文北京预讲会

THANKS

2020.12.19

31