

Machine Reasoning in NLP

Duyu Tang Microsoft Research Asia

Past Tutorials on Machine Reasoning

 NLPCC-2020 Tutorial (3 hours)

Microsoft

Machine Reasoning in NLP

Duyu Tang Microsoft Research Asia

NLPCC-2020 Tutorial

• EMNLP-2020 Tutorial (3 hours)

Hicrosoft

Machine Reasoning: Technology and Dilemma

Nan DUAN, Duyu TANG, Ming ZHOU Microsoft Research Asia {nanduan, dutang, mingzhou}@microsoft.com

EMNLP-2020 Tutorial

Both tutorials are available at https://tangduyu.github.io/

Microsoft Al Breakthroughs

· Gradually approaching human parity

Limitations:

- 1. Lack of transparency of the decision-making process
- 2. Highly rely on annotated data, ignore human/expert knowledge

Example #1: Simple Question Answering

Example #2: Multi–Turn Question Answering

Q1: Which city hosted the Summer Olympics in 2008?

SELECT Character WHERE Year = 2008 A1:

Beijing

204

Q2: How many nations participate that year? SELECT Nations WHERE Year = 2008

Q3: How about 2004?

SELECT Nations WHERE Year = 2004

A3: 201

A2:

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Pairs	France	24
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

Required Knowledge: Symbolic + Conversation

Example #3: Medical Diagnosis

Required Knowledge: Symbolic + Conversation + Domain Knowledge

Example #3: Fact

O Coronavirus D st updated: 2020/10/5, 3:54pm CEST	isease (COVID-19) D	ashboard		Overview	Data Table Explo
ituation by Co	ountry, Territory	& Area			
Name	Cases - cumulative total	Cases - newly reported in last 24 hours	Deaths - cumulative total	Deaths - newly reported in last 24 hours	Transmission Classification
Global	35,109,317	294,763	1,035,341	4,526	
United States	7,305,270	49,036	208,064	698	Community transmission
India	6,623,815	74,442	102,685	903	Clusters of cases
📀 Brazil	4,906,833	26,310	145,987	599	Community transmission
Russian Fed…	1,225,889 🗖	10,888	21,475	117	Clusters of cases
Colombia	848,147	6,616	26,556	159	Community transmission
e Peru	824,985	3,421	32,665	56	Community transmission
 Argentina 	790,818	11,129	20,795	196	Community transmission
spain Spain	789,932 📕	0	32,086	0	Clusters of cases
Mexico	757,953	4,863	78,880	388	Community transmission
South Africa	681,289 🛢	1,573	16,976	38	Community transmission

https://covid19.who.int/table

Example #3: Rule

GROUPS AT RISK

- IF <a person has close contact with animals>
- THEN < the person is at risk>
- IF <a person is a live animal market worker>
- THEN <he/she has close contact with animals>
- IF <a person has close contact with an infected person> THEN <the person is most at risk>

IF <a person is a healthcare worker or a family member of infected person> THEN <the person has close contact with infected person >

Example #3: Machine Reasoning Pipeline

Features of Machine Reasoning

+ Propositional/First–Order Logic + Neuro–symbolic $\begin{array}{l} (\alpha \land \beta) \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\ (\alpha \lor \beta) \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\ ((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\ ((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\ \neg (\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) = (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) = (\neg \alpha \lor \beta) \quad \text{implication elimination} \\ \hline (\alpha \Rightarrow \beta) \quad \text{implication elimination} \quad \text{implic$

First-Order Logic

SEET COIN CE Tem WEB Cobleg = "Yok " λ.x.peple .peen .pale _of_bit h(Doubld Tupn , x)

Symbolic Operations

+ Pre-trained models (e.g. ELMo, BERT, GPT)
+ Evidence (e.g. retrieved docs from Wikipedia/web, retrieved facts from Wikidata/ConceptNet)

Agenda

Opening Logic-based Models in NLP Neural-Symbolic Models in NLP Evidence-based Models in NLP Summary Logic-based Models in NLP

Outline

Propositional Logic and First–Order Logic

- Inference/Theorem Proving: Forward and Backward Chaining
- \cdot Application in NLP

Propositional Logic

- Logical constants: true, false
- · Propositional symbols: P, Q, S, ... (atomic sentences)
- · Wrapping parentheses: (...)
- \cdot Sentences are combined by **connectives**:

∧ ...and [conjunction]

V...or [disjunction]

- \rightarrow ...implies [implication / conditional]
- ↔..is equivalent [biconditional]

¬ ...not [negation]

· Literal: atomic sentence or negated atomic sentence

Attribution: Marie desJardins, Fall

Propositional Logic Examples

- P means "It is hot"
- · Q means "It is humid"
- · R means "It is raining"
- $\cdot \ (\mathsf{P} \land \mathsf{Q}) \to \mathsf{R}$

"If it is hot and humid, then it is raining"

 $\cdot \: \mathsf{Q} \to \mathsf{P}$

"If it is humid, then it is hot"

·Q

"It is humid."

Attribution: Marie desJardins, Fall

Propositional Logic Syntax

- · Given: a set of proposition symbols $\{X_1, X_2, ..., X_n\}$
 - \cdot (we often add True and False for convenience)
- $\cdot X_i$ is a sentence
- \cdot If α is a sentence then $\neg \alpha$ is a sentence
- · If a and β are sentences then a $\land \beta$ is a sentence
- · If a and β are sentences then a $\lor \beta$ is a sentence
- · If α and β are sentences then $\alpha \Rightarrow \beta$ is a sentence
- · If α and β are sentences then $\alpha \Leftrightarrow \beta$ is a sentence
- · And p.s. there are no other sentences!

Attribution: Stuart Russell, 2019,

Logical Equivalence

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Problems with Propositional Logic

- Hard to identify "individuals" (e.g., Mary, 3)
- Can't directly talk about properties of individuals or relations between individuals (e.g., "Bill is tall")
- Generalizations, patterns, regularities can't easily be represented (e.g., "all triangles have 3 sides")
- \cdot Lack of variables prevents stating more general rules
 - $\cdot\,\ensuremath{\mathsf{We}}$ need a set of similar rules for each cell
- First–Order Logic is expressive enough to concisely represent this kind of information
 - $\cdot\,$ FOL adds relations, variables, and quantifiers, e.g.,
 - · "Every elephant is gray": $\forall x (elephant(x) \rightarrow gray(x))$
 - *"There is a white alligator":* ∃ x (alligator(X) ^ white(X))

Attribution: Marie desJardins, Fall

First–Order Logic

- \cdot First–order logic models the world in terms of
 - Objects, which are things with individual identities
 - **Properties** of objects that distinguish them from other objects
 - · Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
 - · Objects: Students, lectures, companies, cars ...
 - Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
 - · Properties: blue, oval, even, large, ...
 - · Functions: father-of, best-friend, second-half, one-more-than ...

Attribution: Marie desJardins, Fall

First–Order Logic Examples

- Universal quantification
 - · $(\forall x)P(x)$ means that P holds for **all** values of x in the domain associated with that variable
 - · E.g., $(\forall x)$ dolphin(x) \rightarrow mammal(x)
- \cdot Existential quantification
 - · $(\exists x)P(x)$ means that P holds for **some** value of x in the domain associated with that variable
 - · E.g., ($\exists x$) mammal(x) \land lays-eggs(x)
 - · Permits one to make a statement about some object without naming it

Language	Propositional logic	First-order logic
Syntax	The world contains facts	The world contains objects, relations, and functions
Semantics	$\alpha \land \beta$ is true in a world iff α is true and β is true (etc.)	$\phi(\sigma)$ is true in a world if $\sigma = o_j$ and ϕ holds for o_j ; etc.

Outline

- Propositional Logic and First–Order Logic
- Inference/Theorem Proving: Forward and Backward Chaini
 We are Here
- \cdot Application in NLP

Forward Chaining

- Start with given proposition symbols (atomic sentence)
 e.g., A and B
- \cdot Iteratively try to infer truth of additional proposition symbols
 - · e.g., A \land B \Rightarrow C, therefor we establish C is true
- · Continue until
 - \cdot no more inference can be carried out, or
 - \cdot goal is reached

Forward Chaining Example: Proving Q

COUNT

2 / **0**

<u>2</u>// 0

CLAUSES

- $P \Rightarrow Q$
- $L \wedge M \Rightarrow 2 1 0 B x x x e true$ Ρ
- $B \land L \Rightarrow$ M
- $A \land P \Rightarrow L$
- 0 • $A \land B \Rightarrow L$ \mathbf{O}
- **A A GENDA**
- 🛃 😹 ¥ $\mathbf{\Omega}$

- INFERRED 1/0 A **xaxe**true
- L xxxxsetrue 21/0
 - M false true
 - P **x**axetrue
 - Q **xxxxe**true

Forward Chaining Algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
 count ← a table, where count[c] is the number of symbols in c's
premise

inferred \leftarrow a table, where inferred[s] is initially false for all s agenda \leftarrow a queue of symbols, initially symbols known to be true in KB

Backward Chaining

- · Idea: work backwards from the query Q:
 - $\cdot\,$ to prove Q by BC,
 - $\cdot \,$ check if Q is known already, or
 - \cdot prove by BC all premises of some rule concluding q
- \cdot Avoid loops: check if new subgoal is already on the goal stack
- · Avoid repeated work: check if new subgoal
 - $\cdot\,$ 1. has already been proved true, or
 - · 2. has already failed

Outline

- Propositional Logic and First–Order Logic
- Inference/Theorem Proving: Forward and Backward Chaining
- Application in Knowledge Base Completion
 - Neural Backward Chaining
 - Logic as constraints

Neural Backward Chaining

Tim Rocktaschel and Sebastian Riedel. **End-to-End Differentiable Proving**. NIPS-

Logic as Constraints

$$[\mathcal{F}] = \begin{cases} \sigma(\mathbf{v}_s \cdot \mathbf{v}_{ij}) & \text{if } \mathcal{F} = r_s(e_i, e_j), \text{ i.e., facts} \\ 1 - [\mathcal{A}] & \text{if } \mathcal{F} = \neg \mathcal{A} \\ [\mathcal{A}] * [\mathcal{B}] & \text{if } \mathcal{F} = \mathcal{A} \land \mathcal{B} \end{cases}$$

$$r_1(e_i, e_j) \land \neg r_2(e_i, e_j) \Rightarrow r_3(e_i, e_j)$$

Tim Rocktaschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge into embeddings for relation extraction. HLT-NAACL,

Performance V.S. Interpretability

- Neural Backward Chaining
 - · Good interpretability, limited scope of application (e.g., completion on structured KB)
- · Regularizing Neural Models
 - · Good performance with neural models as backbone, limited interpretability

Neural–Symbolic Models in NLP

Symbolic Language

First-Order Logic	Every prime greater than two is odd.	$\forall x.prime(x) \land more(x, 2) \rightarrow odd(x)$		
Lambda Calculus	How many primes are less than 10?	count(λx.prime(x)∧less(x, 10))		
Lambda DCS	How many primes are less than 10?	count(prime ⊓ (less.10))		

- First-order logic fails to construct a set and manipulating it.
- The λ operator can be thought of as constructing a set of all x that satisfy the condition; in symbols, $[\lambda x. f(x)]_c = \{x : [f(x)]_c = t ue \}$.

prime	less than	10		prime	less than	10
$\overline{\mathrm{N}[\lambda x.\mathtt{prime}(x)]}$	$\overline{(\mathrm{N}\backslash\mathrm{N})/\mathrm{NP}[\lambda y.\lambda f.\lambda x.f(x)\wedge\mathtt{less}(x,y)}$	NP[10]	Ī	N[prime]	N N[less]	N[10]
	$\frac{1}{N \setminus N[\lambda f.\lambda x.f(x) \land \texttt{less}(x,10)]}$				N[less.	
-	$\frac{(<)}{(<)}$		-		(intersect)	
	$\mathrm{N}[\lambda x.\mathtt{prime}(x) \wedge \mathtt{less}(x,10)]$			N[pr:	ime \sqcap less.1	U
Lambda Calculus				La	mbda DC	S

Percy Liang. Learning Executable Semantic Parsers for Natural Language Understanding. CACM–2016

Semantic Parsing

map an utterance **x** in a context **c** to an action **y**

x: What is the largest prime less than 10?

c:
$$| \texttt{primes} : \{2, 3, 5, 7, 11, \dots \}$$

Percy Liang. Learning Executable Semantic Parsers for Natural Language Understanding. CACM–2016

A Derivation

(R1)	prime	\Rightarrow	NP[primes]
(R2)	10	\Rightarrow	NP[10]
(R3)	less than $NP[z]$	\Rightarrow	$QP[(-\infty, z)]$
$(\mathbf{R4})$	$\operatorname{NP}[z_1] \operatorname{QP}[z_2]$	\Rightarrow	$\operatorname{NP}[z_1 \cap z_2]$
(R5)	largest $NP[z]$	\Rightarrow	NP[max(z)]
(R6)	largest NP[z]	\Rightarrow	NP[min(z)]
(R7)	What is the $NP[z]$?	\Rightarrow	$\operatorname{ROOT}[z]$

Percy Liang. Learning Executable Semantic Parsers for Natural Language Understanding. CACM-2016

Semantic Parsing

Map Natural Language into machine executable logical forms

Outline

Part 2: Module Network

LSNLIS (Lunar Sciences Natural Language Information System)

A question–answering system to enable a lunar geologist to conveniently access, compare, and evaluate the chemical analysis data on lunar rock and soil composition that is accumulating as a result of the Apollo moon missions.

Two DB files. One is a 13,000 line table of chemical and age analysis of the Apollo 11 samples extracted from the reports of a the First Annual Lunar Science Conference, and the second is a keyphrase index to those reports.

A dictionary about 3500 words.

- 1. List the rocks which contain chromite and ulvospinel.
- 2. Give me all references on fayalitic olivine.
- 3. What minerals have been identified in the lunar samples?
- 4. What analyses of olivine are there?
- 5. What is the average analysis of Ir in rock S10055?
- 6. List the modes for all low Rb rocks.
- 7. Give me the K / Rb ratios for all lunar samples.
- 8. Has the mineral analcite been identified in any lunar sample?
- 9. What is the concentration of La in rock S10034?
- 10. Identify all samples in which glass was found.
- 11. Give me all modal analyses of lunar fines.
- 12. In what samples has apatite been identified?

Floating Parser

- · Build formulas bottom-up according to a set of deduction rules
- · Allow formulas to be created from nothing ("floating")

Panupong Pasupat and Percy Liang. "Compositional Semantic Parsing on Semi-Structured Tables." ACL-2015.

Seq2Seq and Seq2Tree

Seq2Seq with 2-layer RNN

Seq2Tree with a hierarchical tree decode

Li Dong and Mirella Lapata. "Language to Logical Form with Neural Attention." ACL-2016.

Seq-to-Seq with Pointer Network

Seq-to-Seq with Structural Decoding

Yibo Sun, Duyu Tang, Nan Duan, Jianshu Ji, Guihong Cao, Xiaocheng Feng, Bing Qin, Ting Liu and Ming Zhou. "Semantic Parsing with Syntax- and Table-Aware SQL Generation." ACL-2018

Seq-to-Seq with Typed Constrained Decoding

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner. Neural semantic parsing with type constraints for semi-structured tables. EMNLP-2017.

Action and Module

➢ Which super heroes came from Earth and first appeared after 2009? SELECT Character WHERE {Home World = Earth} ∧ {First Appeared > 2009}

Legion of Super Heroes Post-Infinite Crisis								
Character	First Appeared	Home World	Powers					
Night Girl	2007	Kathoon	Super strength					
Dragonwing	2010	Earth	Fire breath					
Gates	2009	Vyrga	Teleporting					
XS	2009	Aarok	Super speed					
Harmonia	2011	Earth	Elemental					

Q =*"Which super heroes came from Earth?",* $A^* = \{Dragonwing, Harmonia\}$

Mohit lyyer, Wen-tau Yih, Ming-Wei Chang. Search-based Neural Structured Learning for Sequential Question Answering. ACL-2017.

Action and Module

- The goodness of a state: $V(s_t) = V(s_{t-1}) + \pi(s_{t-1}, a_t), V(s_0) = 0$
- · Value of $\pi(s, a)$ is determined by a neural-network model
- Actions of the same type (e.g., select-column) share the same neural-network module

► Which super heroes came from Earth? ,

Mohit lyyer, Wen-tau Yih, Ming-Wei Chang. Search-based Neural Structured Learning for Sequential Question Answering. ACL-2017.

Coarse-to-Fine Decoding

Li Dong, Mirella Lapata. Coarse-to-Fine Decoding for Neural Semantic Parsing. ACL-2018.

KBQA with Semantic Parsing (single-turn)

S

Where was the president of the United States born?

S

A15\

eus

A15

pes

е_{lБ}

aød

r nes

ed

r _{and}

United States

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou and Jian Yin. "Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base." NeurIPS-2018.

KBQA with Semantic Parsing (multi-turn)

Conversational Question Answering

Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan, Pengcheng Yang, Qi Zeng, Ming Zhou, Xu Sun. "Asking Clarification Questions in Knowledge–Based Question Answering." EMNLP–2019.

Outline

Part 2: Module Network

Module Network

Reusable neural modules with different architectures

 $\texttt{attend}: Image \rightarrow Attention$ attend[dog] Attention Convolution $re-attend: Attention \rightarrow Attention$ re-attend[above] **Re**-Attention FC ReLU (×2) $combine: Attention \times Attention \rightarrow Attention$ combine[except] Combination Stack - Conv. - ReLU $\texttt{classify}: Image \times Attention \rightarrow Label$ classify[where] Classification Attend FC Softmax couch

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. CVPR-2016.

Performance V.S. Interpretability

· Semantic Parser

- · Good interpretability, good performance on limited applications
- $\cdot\,$ The extension of grammar to open domain is challenging

$\cdot \text{ Module Network}$

- · Good performance with neural models as backbone, limited interpretability
- Moderate interpretability, compared with semantic parser.
- · The definition of grammar is typically task-specific, and manually designed by experts

Evidence-based Models in NLP

General Framework

· Consider evidence as an additional input of the model

Open Question Answering

- First large-scale evaluation of domain-independent QA systems.
- Participants were given 200 fact-based, short-answer questions
- Each question was guaranteed to have at least one document in the collection that explicitly answered the question.
- Participants returned a ranked list of [document-id, answer-string] pairs per question such that each answer string was believed to contain an answer to the question.

Sparse Retrieval Model (DrQA)

Document Retriever + Document Reader

- Document retriever: finding relevant articles from 5 million Wikipedia articles
- Document reader (reading comprehension system): identifying the answer spans from those articles

- Datasets:
 - SQuAD (Rajpurkar et al, 2016)
 - TREC (Baudiš and Šedivý, 2005)
 - WebQuestions *F*reebase (Berant et al, 2013)
 - WikiMovies (Miller et al, 2016)

Document Retriever

TF-IDF bag-of-words vectors + efficient bigram hashing (Weinberger et al., 2009)

Document Reader

Task: given paragraph P and question Q, the goal is to find a span A in the paragraph which answers the question. **Model**: similar to AttentiveReader (Hermann et al, 2015; Chen et al, 2016). We aim to keep it **simple**!

The input vectors consist of:

- Word embeddings
- Exact match features: whether the word appears in question
- Token features: POS, NER, term frequency
- Aligned question embedding

Data: SQuAD + Distantly Supervised Data

(Q, A) \longrightarrow (P, Q, A) if P is retrieved and A can be found in P

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. Arxiv-2020

DPR Results

Training	Model	NQ	TriviaQA	WQ	TREC	SQuAD
Single	Single BM25+BERT (Lee et al., 2019)		47.1	17.7	21.3	33.2
Single	ORQA (Lee et al., 2019)	33.3	45.0	36.4	30.1	20.2
Single	HardEM (Min et al., 2019a)	28.1	50.9	-	-	-
Single	GraphRetriever (Min et al., 2019b)	34.5	56.0	36.4	-	-
Single	PathRetriever (Asai et al., 2020)	32.6	-	-	-	56.5
Single	REALM _{Wiki} (Guu et al., 2020)	39.2	-	40.2	46.8	-
Single	REALM _{News} (Guu et al., 2020)	40.4	-	40.7	42.9	-
	BM25	32.6	52.4	29.9	24.9	38.1
Single	DPR	41.5	56.8	34.6	25.9	29.8
	BM25+DPR	39.0	57.0	35.2	28.0	36.7
Multi	DPR	41.5	56.8	42.4	49.4	24.1
IVIUIU	BM25+DPR	38.8	57.9	<mark>41.1</mark>	50.6	35.8

Table 4: End-to-end QA (Exact Match) Accuracy. The first block of results are copied from their cited papers. REALM_{Wiki} and REALM_{News} are the same model but pretrained on Wikipedia and CC-News, respectively. *Single* and *Multi* denote that our Dense Passage Retriever (DPR) is trained using individual or combined training datasets (all except SQuAD). For WQ and TREC in the *Multi* setting, we fine-tune the reader trained on NQ.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. Arxiv-2020

Joint Retrieval and Reader

- · ORQA: Open–Retriever Question Answering
 - \cdot jointly learn the retriever and reader from question-answer string pairs
 - $\cdot\,$ pre-train the retriever with an Inverse Cloze Task.

Kenton Lee, Ming-Wei Chang, Kristina Toutanova. "Latent Retrieval for Weakly Supervised Open Domain Question Answering." ACL-2019

Pre-train Retrieval Model with Inverse Cloze Task

- In ICT, a sentence is treated as a pseudo-question, and its context is treated as pseudo-evidence.
- Given a pseudo-question, ICT requires selecting the corresponding pseudo-evidence out of the candidates in a batch.

Kenton Lee, Ming-Wei Chang, Kristina Toutanova. "Latent Retrieval for Weakly Supervised Open Domain Question Answering." ACL-2019

Pre-train Retrieval Model with REALM

Knowledge Retriever: dense inner product model

$$\begin{split} p(z \mid x) &= \frac{\exp f(x, z)}{\sum_{z'} \exp f(x, z')}, \\ f(x, z) &= \texttt{Embed}_{\texttt{input}}(x)^\top \texttt{Embed}_{\texttt{doc}}(z), \end{split}$$

$$\begin{split} \mathtt{Embed_{input}}(x) &= \mathbf{W}_{\mathtt{input}}\mathtt{BERT}_{\mathtt{CLS}}(\mathtt{join}_{\mathtt{BERT}}(x)) \\ \mathtt{Embed_{doc}}(z) &= \mathbf{W}_{\mathtt{doc}}\mathtt{BERT}_{\mathtt{CLS}}(\mathtt{join}_{\mathtt{BERT}}(z_{\mathtt{title}}, z_{\mathtt{body}}) \end{split}$$

$$\texttt{join}_{\texttt{BERT}}(x) = \texttt{[CLS]}x\texttt{[SEP]}$$
$$\texttt{join}_{\texttt{BERT}}(x_1, x_2) = \texttt{[CLS]}x_1\texttt{[SEP]}x_2\texttt{[SEP]}$$

Realm: Retrieval–augmented language model pre–training K Guu, K Lee, Z Tung, P Pasupat, MW Chang – arXiv :2002.08909

Pre-train Retrieval Model with REALM

Unsupervised pre-training

Supervised fine-tuning

Realm: Retrieval–augmented language model pre–training K Guu, K Lee, Z Tung, P Pasupat, MW Chang – arXiv :2002.08909

Summary

- \cdot Topics covered by this talk
 - \cdot Logic-based Models in NLP
 - · Neural–Symbolic Models in NLP
 - $\cdot\,$ Evidence–based Models in NLP
- \cdot Directions worth pursuing
 - Interpretable models and methods
 - \cdot Deep understanding with reasoning ability

Challenge: Performance vs. Explainability

Explainable Artificial Intelligence (XAI), David Gunning, DARPA/I2O

We are hiring!

- \cdot Both interns and employees.
- \cdot Topics:
 - Semantic Parsing
 - \cdot Code Intelligence
 - Machine Reasoning
- Send email to <u>dutang@microsoft.com</u>