国际人工智能会议 AAAI 2021论文北京预讲会

Revisiting Iterative Back- Microsoft Translation from the Perspective of Compositional Generalization

郭一诺(

Our Team - Main Contributors

Peking University Yinuo Guo

Microsoft Asia Bei Chen

Beihang University Hualei Zhu

Microsoft Asia Jian-Guang

Microsoft Asia Zeqi Lin

Microsoft Asia Dongmei Zhang

Compositional Generalization

 The algebraic ability to understand and produce unseen combinations of seen atoms.
 — Chomsky

Natural LanguageProgramming LanguageTrainrun twice \Rightarrow JUMP WALK

Test jump twice and run ⇒JUMP JUMP RUN

Background: Seq2seq Tasks in NLP

- Machine Translation
- Semantic Parsing
- Summarization

Semi-Supervised Learning

- Parallel data are limited and expensive
- Monolingual data are cheap and abundant, containing lots of unseen combinations
- Hypothesis: semi-supervised learning can enable models understand and produce much more combinations beyond labelled data, thus tackling the bottleneck of lacking compositione'

Unlabeled source-side corpus

Iterative Back-Translation

 We focus on Iterative Back-Translation (IBT), a simple yet effective semisupervised method that has been successfully applied in machine translation.

Three Research Questions

 RQ1:How does IBT affect compositional generalization of seq2seq models?

• Yes

- RQ2: What is the key that contributes to the success of IBT?
 Quality of pseudo parallel data & Perturbations
- RQ3: How to further improve the performance of IBT?
 - Curriculum Iterative Back-translation

Evaluate on CFQ & SCAN

- Substantially improves the performance on CG benchmarks.
- Better monolingual data, better results.

	Models	MCD1	MCD2	MCD3
Which Swedish founder of [M0] produced [M2] ?	LSTM+Attn Transformer	28.9 ± 1.8 34.9 ± 1.1	5.0 ± 0.8 8 2 ± 0.3	10.8 ± 0.6 10.6 ± 1.1
<pre>SELECT DISTINCT ?x0 WHERE {</pre>	Uni-Transformer CGPS T5-11B	37.4 ± 2.2 13.2 ± 3.9 61.4 ± 4.8	8.1 ± 1.6 1.6 ± 0.8 30.1 ± 2.2	$\begin{array}{c} 11.3 \pm 0.3 \\ 6.6 \pm 0.6 \\ 31.2 \pm 5.7 \end{array}$
	GRU+Attn (Ours) +mono30	$\begin{array}{c} 32.6 \pm 0.22 \\ 64.8 \pm 4.4 \end{array}$	$\begin{array}{c} 6.0 \pm 0.25 \\ \textbf{57.8} \pm \textbf{4.9} \end{array}$	$\begin{array}{c} 9.5 \pm 0.25 \\ 64.6 \pm 4.9 \end{array}$
	+mono100 +transductive	83.2 ± 3.1 88.4 ± 0.7	$71.5 \pm 6.9 \\ 81.6 \pm 6.5$	81.3 ± 1.6 88.2 ± 2.2

Quality of Pseudo Parallel Data

 Iterative back-translation can increasingly correct errors in pseudo-parallel data

Impact of Error-Prone Data & Perturbations

- Even noise pseudo-parallel data can bring gains!
 - · As they bring implicit knowledge of unseen combinations
- Perturbations brought by OTF (on-the-fly) is very important!
 - Pseudo-parallel data are generated dynamically, which prevent learning specific incorrect bias

Curriculum Iterative Back-Translation

- We want to help reduce errors more efficiently
- CIBT: during the training process:
 - start out with easy monolingual data,
 - then gradually increase the difficulty.

Curriculum Iterative Back-Translation

- Curriculum learning benefits iterative back-translation.
- Curriculum learning is more beneficial to difficult data than simple data.

0	IBT	CIBT with hyperparameter c (steps in each stage)					
	IDT	2000	2500	3000	3500	4000	
MCD1	64.8 ± 4.4	66.1 ± 5.0	66.0 ± 4.8	66.6 ± 5.4	65.9 ± 3.7	65.4 ± 3.8	
MCD2	57.8 ± 4.9	68.6 ± 2.6	69.1 ± 3.1	68.0 ± 1.9	66.8 ± 2.4	65.4 ± 3.1	
MCD3	64.6 ± 4.9	70.2 ± 4.9	68.4 ± 7.0	70.4 ± 4.8	69.2 ± 4.1	67.0 ± 6.3	
Mean	62.4 ± 6.1	68.3 ± 4.1	67.8 ± 4.7	68.3 ± 4.1	67.3 ± 3.4	65.9 ± 4.1	

Figure 6: Performance on different subsets. This figure indicates that curriculum learning is more beneficial to difficult data (larger k) than simple data (smaller k).

Takeaways

- Iterative back-translation can significantly improve CG.
- Why IBT works well:
 - Unseen combinations
 - Increasingly improving the quality of pseudo-parallel data
 - Perturbations
- We propose curriculum iterative back-translation to further improving the performance.

国际人工智能会议 AAAI 2021论文北京预讲会

THANKS

2020.12.19

Related papers from our team (MSRA DKI): Hierarchical Poset Decoding for Compositional Generalization in Language (NeurIPS 2020) Compositional Generalization by Learning Analytical Expressions (NeurIPS 2020 Spotlight)

Iterating Utterance Segmentation for Neural Semantic Parsing (AAAI 2021)