国际人工智能会议 AAAI 2021 论文北京预讲会

Nested Named Entity Recognition with Partially Observed TreeCRFs

Yao Fu^{1*}, Chuanqi Tan^{2*} Mosha Chen², Songfang Huang², Fei Huang²

*Equal Contribution

¹University of Edinburgh ²Alibaba Group

Task: Nested

Formulation: constituency parsing with partially-observed trees

Goa

A model that properly tackles nested NER

- Jointly model the observed and the latent
- Good performance

A simple and efficient model

- Avoid re-inventing neural architectures
- Batchified and tensorized computation

Approac h TreeCRFs with partially marginalization

But inefficient, a major drawback in previous literature

No clear batchification: Difference sentences, different tree structures

This work focus on these two problems

O(n^3) complexity for each sentence

Our contribution

No clear batchification: Difference sentences, different tree structures

Batchfied likelihood evaluation

O(n^3) complexity for each sentence

O(n log n) complexity

We propose efficient partial marginalization with MASKED INSIDE algorithm

Model

$$e_1, \dots, e_n = \operatorname{FF}(\operatorname{Enc}(x))$$
$$s_{ijk} = e_i^{\mathsf{T}} U_k^{(1)} e_j + (e_i + e_j)^{\mathsf{T}} U_k^{(2)} + b_k$$

Standard Biaffine Scoring (Dozat and Manning 16)

$$\log p(T|x) = s(T) - \log Z$$
$$s(T) = \log \sum_{\tilde{T} \in \tilde{T}} \exp(s(\tilde{T}))$$

Training maximize the likelihood for a partial tree by summing over all compatible full trees

Model

 $s(T) = \log \sum \exp(s(\tilde{T}))$ $\tilde{T} \in \tilde{\mathcal{T}}$

This summation can be down with an Insidestyled DP

But no clear batchification for sentences with different partial trees because DP graph is different

To perform partial

Left: Observed partial tree Right: An example full tree realized from left (other possible full trees exist)

Rejected because of overlapped spans

Rejected because of overlapped spans

Example Latent

Latent nodes can be realized in a full tree

Latent nodes cannot have observed tags: PER, LOC, ORG ... Latent nodes can only be labeled as: LATENT_1, LATENT_2 ...

During training we marginalize all possible latent tags During Inference we drop entities with latent tags to get partial trees

Why we care about nodes with difference

$$s(T) = \log \sum_{\tilde{T} \in \tilde{\mathcal{T}}} \exp(s(\tilde{T}))$$

Different operations for different nodes in this DP summation

Likelihood Evaluation for

Rejection for

Marginalization for the

Unify Operations with Mask

$$\begin{array}{c} \beta_{ijk} = \exp(s_{ijk}) \cdots \\ \beta_{ijk} = exp(s_{ijk}) \cdots \\ \beta_{ijk} = 0 \\ \beta_{ijk} = \sum_{k} exp(s_{ijk}) \cdots \\ \beta_{ijk} = \sum_{k} m_{ijk} \cdot exp(s_{ijk}) \cdots \\ \beta_{ijk} = \sum_{k} m_{ijk} \cdot exp(s_{ijk}) \cdots \\ \beta_{ijk} = \sum_{k} m_{ijk} \cdot exp(s_{ijk}) \cdots \\ \beta_{ijk} = 1, m_{ijk'} = 0 \\ k \text{ observed tag, } k' \text{ all other tags} \\ \end{array}$$

Compared with the original Inside

$$\beta_{ijk} = \sum_{k} \exp(s_{ijk}) \cdots$$

Sum over all possible trees

$$\beta_{ijk} = \sum_{k} m_{ijk} \cdot \exp(s_{ijk}) \cdots$$

Sum over all possible full trees compatible with a partial tree

Only difference is the mask term

Masked

A: for
$$d \leftarrow 1$$
 to $n - 1$ do
Parallelization on i , tensor operation on l, k, k_1, k_2
5: $1 \le i \le n - d; \quad j = i + d; \quad k, k_1, k_2 \in \{1, ..., |\mathcal{L}|\}$
6: $\beta[i, j, k] = (\underline{M}[i, j, k] \exp(s_{ijk})) \cdot \triangleright$ Masked scores
 $\sum_{l=i}^{j-1} \sum_{k_1, k_2 \in \mathcal{L}} \beta[i, l, k_1] \beta[l+1, j, k_2]$
7: Return: $s(T) = \log(\sum_{k \in \mathcal{L}} \beta[1, n, k])$

One single line change of the original Inside algorithm Unify the DP graph for sentences with different partial trees

Reuse recent efficient bachification and tensorization works for the original Inside. We use Torch-Struct

At the end of the

Algorithm 2 INSIDE FOR PARTIAL MARGINALIZATION 1: Input: Scores s, partial tree T and its corresponding \overline{T} 2: for $i \leftarrow 1$ to n do if $\overline{T}[i, i] = \bullet$ then ▷ Observed leaf 3: $\exists k \in \mathcal{L}_o, T_{iik} = 1, \beta[i, i, k] = \exp(s_{iik})$ 4: 5: $\forall m \neq k, \beta[i, i, m] = 0$ 6: else if $\overline{T}[i, i] = \Box$ then ⊳ Latent leaf 7: $\forall k \in \mathcal{L}_o, \beta[i, i, k] = 0$ 8: $\forall k \in \mathcal{L}_l, \beta[i, i, k] = \exp(s_{iik})$ 9: for $d \leftarrow 1$ to n - 1 do for $i \leftarrow 1$ to n - d do 10: 11: i = i + dif $\overline{T}[i, j] = \bullet$ then 12: ⊳ Observed 13: $\exists k \in \mathcal{L}_o, T_{ijk} = 1$ $\beta[i, j, k] = \exp(s_{ijk}) \cdot$ 14: $\sum_{l=i}^{j-1} \sum_{k_1, k_2 \in \mathcal{L}} \beta[i, l, k_1] \beta[l+1, j, k_2]$ $\forall m \neq k, \beta[i, j, m] = 0$ 15: 16: else if $\overline{T}[i, j] = \Box$ then ⊳ Latent $\forall k \in \mathcal{L}_l, \beta[i, j, k] = \exp(s_{ijk}) \cdot$ 17: $\sum_{l=i}^{j-1} \sum_{k_1,k_2 \in \mathcal{L}} \beta[i,l,k_1] \beta[l+1,j,k_2]$ 18: $\forall k \in \mathcal{L}_o, \beta[i, j, k] = 0$ else if $\overline{T}[i, j] = \circ$ then 19: ▷ Rejected 20: $\forall k \in \mathcal{L}, \beta[i, j, k] = 0$ 21: if $\bar{T}[1, n] = \bullet$ then ▷ Observed root $\exists k \in \mathcal{L}_o, T_{1nk} = 1$. Return $s(T) = \beta[1, n, k]$ 22: 23: else if $\overline{T}[1,n] = \Box$ then \triangleright Latent root Return $s(T) = \log(\sum_{k \in \mathcal{L}_{i}} \beta[1, n, k])$ 24:

s(T) = MASKEDINSIDE(s, M)= INSIDE(log M + s)

Turn a conceptually complicated, practically inefficient partial marginalization algorithm into a simple and efficient Masked Inside

Perform<u>anc</u>

e

		A	ACE200	4	ACE2005			GENIA		
	Model	Р	R	F1	Р	R	F1	Р	R	F1
	LSTM-CRF (Lample et al. 2016)	71.3	50.5	58.3	70.3	55.7	62.2	75.2	64.6	69.5
	FOFE(c=6) (Xu et al. 2017)	68.2	54.3	60.5	76.5	66.3	71.0	75.4	67.8	71.4
	Transition (Wang et al. 2018)	74.9	71.8	73.3	74.5	71.5	73.0	78.0	70.2	73.9
	Cascaded-CRF (Ju et al. 2018)	-	-	-	74.2	70.3	72.2	78.5	71.3	74.7
	SH(c=n) (Wang and Lu 2018)	77.7	72.1	74.5	76.8	72.3	74.5	77.0	73.3	75.1
	ML (Fisher and Vlachos 2019)	-	-	-	75.1	74.1	74.6	-	-	-
	BENSC (Tan et al. 2020)	78.1	72.8	75.3	77.1	74.2	75.6	78.9	72.7	75.7
	Pyramid (Jue et al. 2020)	81.1	79.4	80.3	80.0	78.9	79.4	78.6	77.0	77.8
	with Pretrained LM									
	MGNER (ELMo) (Xia et al. 2019)	81.7	77.4	79.5	79.0	77.3	78.2	-	-	-
	ML (ELMo) (Fisher and Vlachos 2019)	-	-	-	79.7	78.0	78.9	-	-	-
	ML (BERT) (Fisher and Vlachos 2019)	-	-	-	82.7	82.1	82.4	-	-	-
	Seq2seq (Straková, Straka, and Hajic 2019)	-	-	84.3	-	-	83.4	-	-	78.2
	BENSC (BERT) (Tan et al. 2020)	85.8	84.8	85.3	83.8	83.9	83.9	79.2	77.4	78.3
	Pyramid (BERT) (Jue et al. 2020)	86.1	86.5	86.3	84.0	85.4	84.7	79.5	78.9	79.2
	with Additional Supervision									
	DYGIE (Luan et al. 2019)	-	-	84.7	-	-	82.9	-	-	76.2
	Yu, Bohnet, and Poesio (2020)	87.3	86.0	86.7	85.2	85.6	85.4	81.8	79.3	80.5
	BERT-MRC (Li et al. 2020)	85.0	86.3	86.0	87.2	86.6	86.9	85.2	81.1	83.8
	PO-TreeCRFs (ours)	86.7	86.5	86.6	84.5	86.4	85.4	78.2	78.2	78.2
		±0.4	± 0.4	± 0.3	± 0.4	± 0.2	± 0.1	± 0.7	± 0.8	± 0.1
	PO-TreeCRFs Ablation Study									
	Change Biaffine to Bilinear	86.0	86.7	86.4	83.0	86.5	84.7	79.9	75.5	77.6
	W/o. Structure Smoothing	86.1	86.4	86.2	83.5	85.8	84.6	78.7	76.5	77.6
	W/o. Potential Normalization and Structure Smoothing	86.0	85.3	85.7	82.7	86.2	84.4	76.5	78.1	77.3
	W/o. TreeCRFs	84.4	85.4	84.9	82.0	86.4	84.1	80.5	74.5	77.4

Table 2: Main results and ablation studies on three datasets. We report the average scores of 5 runs for main results.

Time Complexity

Method	Inside (Vanilla)	Masked Inside	Biaffine
GPU Time	14m58s	3m20s	2m27s
CPU Time	2h5m	24m	22m10s
Complexity	$O(n^3)$	$O(n\log n)$	O(1)

Conclusio

A method using partially-observed TreeCRFs for nested NER

Key contribution is about efficient inference

- Construct masks to unify different inference operations
- Replace original partial marginalization algorithm with Masked Inside algorithm

Conclusio n

Code: https://github.com/FranxYao/Partially-Observed-TreeCRFs

Any questions, please contact: chuanqi.tcq@alibaba-inc.com chenmosha.cms@alibaba-inc.com

Thanks!