国际人工智能会议 AAAI 2021 论文北京预讲会

Bai du Elĝ

Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction

Benfeng Xu^{1*}, Quan Wang², Yajuan Lyu², Yong Zhu², Zhendong Mao¹

¹School of Information Science and Technology, University of Science and Technology of China

²Baidu Inc.

^{*} This work was done while the first author is an intern at Baidu Inc.

Introduction

Task: Document-level Relation Extraction

- Input:
 - document-level text
 - multiple entities along with their mentions
- Target:
 - identify relations for every entity pair

[1] Yao, Y., Ye, D., Li, P., Han, X., Lin, Y., Liu, Z., ... & Sun, M. (2019). DocRED: A large-scale document-level relation extraction dataset. arXiv preprint arXiv:1906.06127.

Kungliga Hovkapellet

 Kungliga Hovkapellet (The Royal Court Orchestra) is a <u>Swedish</u> orchestra, originally part of the <u>Royal Court</u> in <u>Sweden</u>'s capital <u>Stockholm</u>. [2] The orchestra originally consisted of both musicians and singers. [3] It had only male members until <u>1727</u>, when <u>Sophia Schröder</u> and <u>Judith Fischer</u> were employed as vocalists; in the <u>1850s</u>, the harpist <u>Marie Pauline Åhman</u> became the first female instrumentalist. [4] From <u>1731</u>, public concerts were performed at <u>Riddarhuset</u> in <u>Stockholm</u>. [5] Since <u>1773</u>, when the <u>Royal Swedish Opera</u> was founded by <u>Gustav III</u> of <u>Sweden</u>, the <u>Kungliga Hovkapellet</u> has been part of the opera's company.
 Subject: <u>Kungliga Hovkapellet</u>; <u>Royal Court Orchestra</u>

Subject: Kungliga Hovkapellet; Royal Court Orchestra Object: Royal Swedish Opera Relation: part_of Supporting Evidence: 5 Subject: Riddarhuset

 Subject:
 Sweden

 Relation:
 country

 Supporting Evidence:
 1, 4

An example from DocRED dataset^[1]

A Motivating Example

Various dependencies among mentions indicates rich interactions, and thereby provides informative priors for relation extraction task:

- Blue link: reside in the same sentence and depend
 on local context
- Red link: coreference to each other
- Green link: no direct connection, but might be associated via multiple hops

Coming Down Again						
S1: "Coming Down Again" is a song by the rolling stones featured on their 1973 album Goats Head Soup						
S2: It is sung as a duet b	y Keith Richards	and Mick Jagger.				
S3~S4:						
S5: <i>The song</i> opens with Stones recording veteran <i>Nicky Hopkins</i> playing keyboards alongside a fluid, prominent bassline performed by Mick Taylor.						
S6~S11:						
S:Coming Down Again	R:Performer	O:Rolling Stones				
S: <mark>Mick Jagger</mark>	R:Member of	O: Rolling Stones				
S:Nicky Hopkins	R:Member of	O: Rolling Stones				

Approach: Formulate Entity Structure

- Co-occurrence structure: whether or not two mentions reside in the same sentence.
- Coreference structure: whether or not two mentions refer to the same entity.
- IntraNE: intra-sentential non-entity words (local

		Coreference			
		True	False		
Co-occurence	True	intra+coref	intra+relate		
	False	inter+coref	inter+relate		

Approach: Structured Self-Attention Network

• Vanilla self-attention

$$\boldsymbol{e}_{ij}^{l} = \frac{(\boldsymbol{x}_{i}^{l} \boldsymbol{W})(\boldsymbol{x}_{j}^{l} \boldsymbol{W})^{\mathsf{T}}}{\sqrt{d}} = \frac{\boldsymbol{q}_{i}^{l} \boldsymbol{k}_{i}^{l}}{\sqrt{d}}$$

Feed Forward N E1 N E1 E2 N E1 N E3 E3 **Biaffine Transformation** ٠ 0000000 $\mathbf{e}_{i,i}^{T} = \frac{\mathbf{q}_{i}^{I} \mathbf{k}_{i}^{I'} + \mathbf{q}_{i}^{I} \mathbf{A}_{i, s_{i,j}} \mathbf{k}_{i}^{I'} + \mathbf{b}_{I, s_{i,j}}}{\mathbf{e}_{i,j}^{T}}$ Add & Norm 00000000000 Nx Aggregation E1 \bigcirc \bigcirc E2 **Decomposed Linear Transformation** Bias • Transformation MatMul $\mathbf{e}_{i\,i}^{\Box} = \frac{\mathbf{q}_{i\,k}^{I}\mathbf{k}_{i}^{T} + \mathbf{q}_{i\,k}^{I}\mathbf{k}_{I,\ s_{i,j}}^{T} + \mathbf{Q}_{i,\ s_{i,j}}\mathbf{k}_{i}^{T} + \mathbf{b}_{I,\ s_{i,j}}}{\sqrt{2}}$ $E1 \bigcirc \bigcirc$ 0 0 0 0 0Entity 🖊 Structure

output

Input

Add & Norm

intra+coref

intra+relate 🔘

inter+coref ()

inter+relate

intraNE

 \bigcirc

S1

S2

NA

 $\begin{array}{l} \# \, s_{i,j} : \mbox{structural prior between token i and token j, } s_{i,j} \in \\ \{\mbox{intra+coref, inter+coref, intra+relate, inter+relate, intranet, NA} \} \\ \# A_{I, \ s_{i,j}}, K_{I, \ s_{i,j}}^{T}, Q_{I, \ s_{i,j}}, b_{I, \ s_{i,j}} : \mbox{learnable modules} \end{array}$

Experiments

Model	Dev Ign F1 / F1	Test Ign F1 / F1	Model	Dev F1	Test F1	Intra- / Inter- Test F1	Model	Dev F1	Test F1	Intra- / Inter Test F1
ContexAware (2019)	48.94 / 51.09	48.40 / 50.70	(Gu et al. 2017)	-	61.3	57.2 / 11.7	EoG (2019)	78.7	81.5	85.2/49.3
EoG*(2019)	45.94 / 52.15	49.48 / 51.82	BRAN(2018)	-	62.1	-/-	LSR (2020)	-	79.6	83.1 / 49.6
BERT Two-Phase (2019a)	- / 54.42	- / 53.92	CNN+CNNchar(2018)	-	62.3	-/-	LSR w/o MDP (2020)	-	82.2	85.4 / 51.1
GloVe+LSR (2020)	48.82 / 55.17	52.15 / 54.18	GCNN(2019)	57.2	58.6	- / -	BEDT Base Baseline	70.8	81.2	847/603
HINBERT (2020)	54.29 / 56.31	53.70 / 55.60	EoG (2019)	63.6	63.6	68.2 / 50.9	SSAN_	79.0 81.5	83 A	867/623
CorefBERT Base (2020)	55.32/57.51	54.54 / 56.96	LSR (2020)	-	61.2	66.2 / 50.3	SSAN	81.6	82.1	861/568
CorefBERT Large (2020)	56.73 / 58.88	56.48 / 58.70	LSR w/o MDP (2020)	-	64.8	68.9 / 53.1	Blaffine	01.0	02.1	00.17 50.0
BERT+LSR (2020)	52.43 / 59.00	56.97 / 59.05	BERT (2020)	-	60.5	-/-	BERT Large Baseline	80.4	81.6	84.9/61.5
CorefRoBERTa (2020)	57.84 / 59.93	57.68 / 59.91	SciBERT (2020)	-	64.0	- / -	SSAN _{Decomp}	82.0	83.8	86.6 / 65.0
			methods us	ing extern	nal resour	ces	SSAN _{Biaffine}	82.2	83.9	86.9 / 63.9
BERT Base Baseline	56.29 / 58.60	55.08 / 57.54	(Peng, Wei, and Lu 2016)	-	63.1	-/-	SciBERT Baseline	81.4	83.6	87.2 / 61.8
SSAN _{Decomp}	56.68 / 58.95	56.06 / 58.41	(Li et al. 2016b)	-	67.7	58.9 / -	SSAN _{Decomp}	82.5	83.2	87.0 / 60.0
SSAN _{Biaffine}	57.03 / 59.19	55.84 / 58.16	(Panyam et al. 2018)	-	60.3	65.1 / 45.7	SSAN Biaffine	82.8	83.7	86.6 / 65.3
BERT Large Baseline	58.11/60.18	57.91 / 60.03	(Zheng et al. 2018)	-	61.5	-/-				
SSANDecomp	58.42 / 60.36	57.97 / 60.01		(17	(1.4	(0.2.1.44.0		CD/	1	
SSAN _{Biaffine}	59.12 / 61.09	58.76 / 60.81	BERT Base Baseline	61.7	61.4	69.3/44.9		UDr	٦	
D-DEDT- D1	57 (2 / 50 72	57 07 / 50 49	SSANDecomp	647	61.2	08.0/45.1				
ROBERTA Base Baseline	57.057.59.75	57.277 59.48	SSANBiaffine	04.7	02.7	/0.4 / 44./				
SSANDecomp	58.29/60.22	57.72/ 59.75	BERT Large Baseline	65.3	63.6	70.8 / 49.0				
SSAIN _{Biaffine}	58.85 / 00.89	57.717 59.94	SSAN _{Decomp}	64.9	64.5	71.2 / 50.2				
RoBERTa Large Baseline	58.45 / 60.58	58.43 / 60.54	SSAN Biaffine	65.8	65.3	71.4 / 52.0				
SSAN _{Decomp}	59.54 / 61.50	59.11/61.24	SciBERT Baseline	68.2	65.8	719/533				
SSAN _{Biaffine}	60.25 / 62.08	59.47 / 61.42	SSANDecomp	67.9	67.0	72.6 / 55.8				
+ Adaptation	63.76 / 65.69	63.78 / 65.92	SSAN _{Biaffine}	68.4	68.7	74.5 / 56.2				

DocRED

CDR

Ablation Study

Visualization of produced International Inter

• Ablation on entity structure

formulate pendency	Ign F1	F1
SSAN _{Biaffine} (RoBERTa Large)	60.25	62.08
- intra+coref	59.59	61.57
- intra+relate	59.92	61.91
- inter+coref	59.87	61.74
- inter+relate	59.92	61.84
- intraNE	59.96	61.97
- all	58.45	60.58

Ablation on Transformation

MODULE ^{Sias Term}	Ign F1	F1		
RoBERTa Large baseline (w/o bias)	58.45	60.58		
$+b_{s_{ij}}$	58.62	60.59		
$+oldsymbol{Q}_{s_{ij}}oldsymbol{k}_{j}^{T}$	58.79	60.65		
$ + q_i \check{oldsymbol{K}}_{s_{ij}}^T $	59.26	61.31		
$+oldsymbol{q}_ioldsymbol{K}_{s_{ij}}^T+oldsymbol{Q}_{s_{ij}}oldsymbol{k}_j^T+b_{s_{ij}}$	59.54	61.50		
$+oldsymbol{q}_ioldsymbol{A}_{s_{ij}}oldsymbol{k}_j^T$	59.83	61.75		
$+oldsymbol{q}_ioldsymbol{A}_{s_{ij}}oldsymbol{k}_j^T+b_{s_{ij}}$	60.25	62.08		

国际人工智能会议 AAAI 2021论文北京预讲会

THANKS

2020.12.19