What the role is vs. What plays the role: Semi-supervised Event Argument Extraction via Dual Question Answering

Yang Zhou, Yubo Chen, Jun Zhao, Yin Wu, Jiexin Xu, JinLong Li
Background

Event Mention: He claimed Iraqi troops had destroyed five tanks

Event Detection:
• Event type: Attack
• Trigger: destroyed

Event Argument Extraction:
• Attacker: Iraqi troops
• Target: five tanks
Motivation

• Event Argument Extraction become the bottleneck:
 Event detection has gained great popularity and reached a fairly high performance (Wang et al. 2019), event argument extraction becomes the key to event extraction.

• Data sparse:
 According to our statistics, about 60% event types in ACE 2005 English corpus (Doddington et al. 2004) have less than 100 labeled samples and only 1.11% events in ACE 2005 have all roles that the type should contain.

Motivation

• Model
 • Insufficient parameter sharing
 • Previous studies always model different roles separately
 • Insufficient utilizing semantics of the roles
 • Previous studies treat the roles as labels, without allowing the model to understand the meaning of labels.

• Data
 • Rely heavily on external resources
Method

• Model
 • We formulate the EAE as Machine Reading Comprehension (MRC)
 • Define EAR (Primal Task) and ERR (Dual Task)

• Data
 • Design a dual training process
Method

• **Question Generation**

 • **EAR:** What plays the role x_r in x_{ts}? (x_d^1, \ldots, x_d^n)

 • **ERR:** What is the role of x_a in x_{ts}?

• **Example**

 • *Destination: destination* is a type of goal; terminus is a translation of *destination*.
Method

- **Instance Encode**
 - BERT
 - Parameter-sharing

- **Flow Attention**
 - Parameter-sharing

- **Classifier**
 - MLP
 - CNN
Method

• Semi-supervised Dual Training Strategy
 • Joint Train
 • Optimize alternative
 • Mutual
 \[
 O(\theta) = \max(\mathbb{E}_{(c,r,a) \in S_A} [\log(p(a|c,r,\theta))]) \\
 = \min(-\mathcal{L}_A(S_A, \theta)) \\
 = -\min \sum_{k=1}^{|S_A|} \log(p(a^k_s|c^k,r^k,\theta)) \\
 + \log(p(a^k_c|c^k,r^k,\theta)),
 \]

 \[
 O(\phi) = \max(\mathbb{E}_{(c,r,a) \in S_R} [\log(p(r|c,a,\phi))]) \\
 = \min(-\mathcal{L}_R(S_R, \phi)) \\
 = -\min \sum_{k=1}^{|S_R|} \log(p(r^k|c^k,a^k,\phi)),
 \]

• Label Data
 • Verify each other

Algorithm 1 DualQA Learning Algorithm

Input: Labeled data $S_A = \{(c_i, a_i, r_i)\}_{i=1}^{|S_A|}$ and $S_R = \{(c_i, a_i, r_i)\}_{i=1}^{|S_R|}$, unlabeled data $S_U = \{(c_j)\}_{j=1}^{|S_U|}$

1: while $S_U \neq \emptyset$ and not converge do
2: $M^a_{\theta}, M^r_{\phi} \leftarrow$ Initialize
3: $M^a_{\theta}, M^r_{\phi} \leftarrow$ Joint train using S_A and S_R (Eq. 10)
4: for all c_j in S_U do
5: for all r in event schema of c_j do
6: $\hat{a} \leftarrow M^a_{\theta}(c_j, r)$
7: $\hat{r} \leftarrow M^r_{\phi}(c_j, \hat{a})$
8: if \hat{a} not neg and \hat{r} not neg and $\hat{r} = r$ then
9: $\text{Append}(c_j, \hat{a}, r)$ to S_A and S_R
10: end if
11: end for
12: for all a in argument candidate of c_j do
13: $\hat{\rho} \leftarrow M^a_{\theta}(c_j, a)$
14: $\hat{a} \leftarrow M^r_{\phi}(c_j, \hat{\rho})$
15: if \hat{a} not neg and \hat{r} not neg and $\hat{a} = a$ then
16: $\text{Append}(c_j, a, \hat{\rho})$ to S_A and S_R
17: end if
18: end for
19: if all role of c_j and all argument related to c_j has credible answer then
20: Remove (c_j) from S_U
21: end if
22: end for
23: end while

Output: Enhanced M^a_{θ}
Experiments

• Experimental Settings
 • Dataset
 • We choose two public event extraction datasets from completely different fields to validate the effectiveness and annotation ability of our method.
 • Data Settings
 • labeled set, unlabeled set form training set.
 • Baselines
 • BERT-based baselines and their enhanced versions
Experiments

Comparisons with SOTA methods

- In ACE 2005 English corpus, we sample 10% training data as labeled set and 60% training data as unlabeled set.
- In FewFC, we sample 1% training data as labeled set and 60% training data as unlabeled set.
- Under low-resource settings, DualQA can outperform SOTA methods.
- We have high precision.

<table>
<thead>
<tr>
<th>Method/Dataset</th>
<th>ACE P</th>
<th>R</th>
<th>F1</th>
<th>FewFC P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT-EE(Devlin et al.)</td>
<td>26.7</td>
<td>38.2</td>
<td>31.4</td>
<td>18.9</td>
<td>35.9</td>
<td>24.8</td>
</tr>
<tr>
<td>BERT-EE*</td>
<td>28.3</td>
<td>41.9</td>
<td>33.8</td>
<td>19.4</td>
<td>37.6</td>
<td>25.6</td>
</tr>
<tr>
<td>PLMEE(Yang et al.)</td>
<td>36.3</td>
<td>46.8</td>
<td>40.9</td>
<td>52.0</td>
<td>30.9</td>
<td>38.8</td>
</tr>
<tr>
<td>PLMEE*</td>
<td>37.6</td>
<td>46.6</td>
<td>41.6</td>
<td>54.1</td>
<td>31.9</td>
<td>40.2</td>
</tr>
<tr>
<td>DualQA</td>
<td>49.1</td>
<td>42.3</td>
<td>45.4</td>
<td>57.4</td>
<td>34.4</td>
<td>43.1</td>
</tr>
</tbody>
</table>
Ablation Study

- The effectiveness of MRC framework
 - MRC-based methods make significant improvements compare with the sequence labeling model.

- The effectiveness of dual learning
 - Our approach is more efficient in benefiting from unlabeled data.
 - Dual learning leads to high precision.
 - Best model will get in the middle of training epoch
Ablation Study

• The effectiveness under different amounts of labeled data.
 • Our approach is more robust than the baseline under extremely low resource situations.

• The quality of annotations.
 • The annotations quality of our method outperforms other methods.
THANKS

2020.12.19