国际人工智能会议 AAAI 2021 论文北京预讲会

What the role is vs. What plays the role: Semi-supervised Event Argument Extraction via Dual Question Answering

Yang Zhou, Yubo Chen, Jun Zhao, Yin Wu, Jiexin Xu, JinLong Li

Background

Event Mention: He claimed Iraqi troops had destroyed five tanks

Event Detection:

- Event type: *A ttack*
- Trigger: destroyed

Event Argument Extraction:

- Attacker: Iraqi troops
- Target: *five tanks*

Motivation

• Event Argument Extraction become the bottleneck:

Event detection has gained great popularity and reached a fairly high performance (Wang et al. 2019), event argument extraction becomes the key to event extraction.

• Data sparse:

According to our statistics, about 60% event types in ACE 2005 English corpus (Doddington et al. 2004) have less than 100 labeled samples and only 1.11% events in ACE 2005 have all roles that the type should contain.

Wang, X.; Wang, Z.; Han, X.; Liu, Z.; Li, J.; Li, P.; Sun, M.; Zhou, J.; and Ren, X. 2019. HMEAE: Hierarchical Modular Event Argument Extraction In Proceedings of the EMNLP- IJCNLP 2019, 5776–5782. Association for Computational Linguistics Doddington, G. R.; Mitchell, A.; Przybocki, M. A.; Ramshaw, L. A.; Strassel, S. M.; and Weischedel, R. M. 2004. The automatic content extraction (ace) program-tasks, data, and evaluation. In Lrec. volume 2, 837–840. Lisbon.

Motivation

• Model

- Insufficient parameter sharing
 - Previous studies always model different roles separately
- Insufficient utilizing semantics of the roles
 - Previous studies treat the roles as labels, without allowing the model to understand the meaning of labels.

• Data

• Rely heavily on external resources

• Model

- We formulate the EAE as Machine Reading Comprehension (MRC)
- Define EAR (Primal Task) and ERR (Dual Task)

• Data

• Design a dual training process

Question Generation

- EAR: What plays the role x_r in x_{ts} ? $(x_d^1, ..., x_d^n)$
- ERR: What is the role of x_a in x_{ts} ?

- Example
 - *Destination*: *destination* is a type of goal ; terminus is a translation of *destination*.

Speer, R.; and Havasi, C. 2013. ConceptNet 5: A Large Se- mantic Network for Relational Knowledge. In The People's Web Meets NLP, Collaboratively Constructed Language Re- sources, Theory and Applications of Natural Language Pro- cessing, 161–176. Springer.

• Instance Encode

- BERT
- Parameter-sharing
- Flow Attention
 - Parameter-sharing
- Classifier
 - MLP
 - CNN

Role Classifier

Shared Encoder

• Semi-supervised Dual Training Strategy

- Joint Train
 - Optimize alternative
 - Mutual

$$\begin{aligned} \mathbf{O}(\theta) &= max(\mathbb{E}_{(c,r,a)\in S_{A}}[log(p(a|c,r,\theta))]) \\ &= min(-\mathcal{L}_{A}(S_{A},\theta)) \\ &= -min\sum_{k=1}^{|S_{A}|}(log(p(a_{s}^{k}|c^{k},r^{k},\theta)) \\ &+ log(p(a_{e}^{k}|c^{k},r^{k},\theta))), \end{aligned} \\ \begin{aligned} \mathbf{O}(\phi) &= max(\mathbb{E}_{(c,r,a)\in S_{R}}[log(p(r|c,a,\phi))])) \\ &= min(-\mathcal{L}_{R}(S_{R},\phi)) \\ &= -min\sum_{k=1}^{|S_{R}|}log(p(r^{k}|c^{k},a^{k},\phi)), \end{aligned}$$

- Label Data
 - Verify each other

Algorithm 1 DualQA Learning Algorithm

Input: Labeled data $S_A = \{(c_i, a_i, r_i)\}_{i=1}^{|S_A|}$ and $S_R =$ $\{(c_i, a_i, r_i)\}_{i=1}^{|S_R|}$, unlabeled data $S_U = \{(c_i)\}_{i=1}^{|S_U|}$ 1: while $S_U \neq \emptyset$ and not converge do $\mathcal{M}^{a}_{\theta}, \mathcal{M}^{r}_{\phi} \leftarrow \text{Initialize}$ 2: $\mathcal{M}^{a}_{\theta}, \mathcal{M}^{\dot{r}}_{\phi} \leftarrow$ Joint train using S_{A} and S_{R} (Eq. 10) for all c_i in S_U do 4: for all r in event schema of c_i do 5: 6: $\hat{a} \leftarrow \mathcal{M}^a_{\theta}(c_i, r)$ 7: $\hat{r} \leftarrow \mathcal{M}^{\hat{r}}_{\phi}(c_j, \hat{a})$ if \hat{a} not neg and \hat{r} not neg and $\hat{r} = r$ then 8: Append (c_i, \hat{a}, r) to S_A and S_R 9: end if 0: end for 1: for all a in argument candidate of c_i do 2: $\hat{r} \leftarrow \mathcal{M}^r_{\phi}(c_j, a)$ 3: $\hat{a} \leftarrow \mathcal{M}^a_{\rho}(c_i, \hat{r})$ 4: if \hat{a} not neg and \hat{r} not neg and $\hat{a} = a$ then 5: Append (c_i, a, \hat{r}) to S_A and S_R 6: end if 17: end for 18: if all role of c_i and all argument related to c_i has 19: credible answer then Remove (c_i) from S_U 20: 21: end if 22: end for 23: end while **Output:** Enhanced $\mathcal{M}^a_{\mathcal{A}}$

Experiments

• Experimental Settings

- Dataset
 - We choose two public event extraction datasets from completely different fields to validate the effectiveness and an- notation ability of our method.
- Data Settings
 - labeled set, unlabeled set form training set.
- Baselines
 - **BERT-based** baselines and their enhanced versions

Experiments

Method/Dataset		ACE	c	FewFC			
Method/Dataset	Р	R	F1	Р	R	F1	
BERT-EE(Devlin et al.)	26.7	38.2	31.4	18.9	35.9	24.8	
BERT-EE*	28.3	41.9	33.8	19.4	37.6	25.6	
PLMEE(Yang et al.)	36.3	46.8	40.9	52.0	30.9	38.8	
PLMEE*	37.6	46.6	41.6	54.1	31.9	40.2	
DualQA	49.1	42.3	45.4	57.4	34.4	43.1	

Comparisons with SOTA methods

- In ACE 2005 English corpus, we sample 10% training data as labeled set and 60% training data as unlabeled set.
- In FewFC, we sample 1% training data as labeled set and 60% training data as unlabeled set.
- Under low-resource settings, DualQA can outperform SOTA methods.
- We have high precision.

Ablation Study

Method/Dataset P	ACE		FewFC			Method/Dataset	ACE		FewFC					
	Р	R	F1	Р	R	F1		Withou/Dataset	Р	R	F1	Р	R	F1
BERT-EE(Devlin et al.)	26.7	38.2	31.4	18.9	35.9	24.8		PLMEE(Yang et al.)	36.3	46.8	40.9	52.0	30.9	38.8
BERT-EE*	28.3	41.9	33.8	19.4	37.6	25.6		PLMEE*	37.6	46.6	41.6	54.1	31.9	40.2
EAR	33.6	42.6	37.5	34.8	28.4	32.0	1 _	EAR	33.6	42.6	37.5	34.8	28.4	32.0
EAR*	44.2	35.4	39.3	40.0	30.2	34.4	ן ו	Joint-EAR-ERR	40.5	42.2	41.4	40.0	43.0	41.5
DualQA	49.1	42.3	45.4	57.4	34.4	43.1	_ C	DualQA	49.1	42.3	45.4	57.4	34.4	43.1

• The effectiveness of MRC framework

• MRC-based methods make significant improvements compare with the sequence labeling model.

• The effectiveness of dual learning

- Our approach is more efficient in benefiting from unlabeled data.
- Dual learning leads to high precision.
- Best model will get in the middle of training epoch

Ablation Study

- The effectiveness under different amounts of labeled data.
 - Our approach is more robust than the baseline under extremely low resource situations.
- The quality of annotations.
 - The annotations quality of our method outperforms other methods

国际人工智能会议 AAAI 2021论文北京预讲会

THANKS

2020.12.19