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INTRODUCTION

Conditional Text Generation
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e Conditional text generation has been a
research hotspot in recent years.

e Most of those tasks focus on how to
generate good texts under certain
conditions, while few work
concentrates on how the consequence
changes when the condition is
modified.

e The causal relationship between
condition and its corresponding
generation is not well studied in these
tasks.



INTRODUCTION

Counterfactual Story Generation Task -- test the causal reasoning ability for text generation models

Cares about how to revise an original story ending guided by a modified
condition.

Premise
Original Story panysloyedilowers, Counterfactual Story
Original Condition Counterfactual Condition
[ She decided to go to the park. J [ She decided to go to the florist. ]

Original Ending J Counterfactual Ending

She smelled all the flowers growing in the field. She smelled all the flowers growing in the building.
She picked a few flowers and brought them home. | | She bought a few flowers and brought them home.
She placed the flowers in a vase with water. She placed the flowers in a vase with water.




INTRODUCTION

How to generate consistent counterfactual endings?
Our Idea: Explore the causality in text generation.
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Premise
Original Story Maryilovedflowers: Counterfactual Story
Original Condition Counterfactual Condition
[ She decided to go to the park. ] [ She decided to go to the florist. J
Original Ending ¥ Counterfactual Ending
She smelled all the flowers growing in the field. She smelled all the flowers growing in the building.

She picked a few flowers and brought them home. | | She bought a few flowers and brought them home.
She placed the flowers in a vase with water. She placed the flowers in a vase with water.




I INTRODUCTION

How do previous works do such task?

Counterfactual

Premise p Condition ¢’ Counterfactual Ending o’

She --- flowers growing in the building . She bought a few flowers and --- water.

[ Mary loved flowers. I She goes to the florist.

Seq2Seq-GPT
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She --- flowers growing in the field . She picked a few flowers and --- water.

Premise p Original Condition ¢ Original Ending e




I INTRODUCTION
Problem

Counterfactual
Premise p Condition ¢’ Counterfactual Ending o’

[ Mary loved flowers. I She goes to the florist. | She -+ flowers growing in the building . She bought a few flowers and --- water.

Conflict

[]
Generated Counterfactual Ending e’

She --- flowers growing in the field . She bought a few flowers and --- water.

[ Mary loved flowers. I She goes to the park. ] She --- flowers growing in the field . She picked a few flowers and --- water.

Premise p Original Condition ¢ Original Ending e



I INTRODUCTION
Reasons

Counterfactual
Premise p Condition ¢’ Counterfactual Ending o’

[ Mary loved flowers. I She goes to the florist. | She -+ flowers growing in the building . She bought a few flowers and --- water.

2\
e Most words are the same. Copying will lead to a low

MLE loss.

e Have difficulty in distinguishing words of different
importance.

e Captures some spurious correlations between the two
endings, instead of the causal relations between

[ Mary loved flowers. I She goes to the park. ] She --- flowers growing in the field . She picked a few flowers and --- water.

Premise p Original Condition ¢ = Original Ending e



OUR APPROACHES

Two-stage Model -- Sketch & Customize

Stage2: Customize _
Generated Counterfactual Ending e’

[ She - flowers growing in the building. She bought a few flowers and --- water.
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[ She - flowers growing in the . She a few flowers and --- water .
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[ She ‘- flowers growing in the field . She picked a few flowers and ‘-~ water.

Premise p Original Condition ¢ Counterfactual Condition ¢’
[Mary loved flowers. ] [ She goes to the park. ] [ She goes to the florist.




I OUR APPROACHES
Sketch - Causality Detection with BERT

Causal Skeleton k

[ She '-- flowers growinginthe _ . She _ afew flowers and -+ water . e BERT
Uittt iieiieiaiel” St Wit | representation
St T '
: Stagel: Sketch | R = {,r,l’.” 7TNT} GRN"XE
' | 1,,, e 1 1 11 0 1 0 11 1 1 -1 !
i FC Useless !
T T T Exmat . @ Sequence Labelling
- BERT J |
! [ r~ Skelcton | p1(l;|S) = softmax(Wr; 4+ b),
i INPUT [[PRE]@ [O_CON] [C_CON] [O_END] I e ] ! l o 0, 1 € €causal . N.. N
'____________________________________________@; _____________ ! T T 1 ’L¢€ ’ (AS [ e T']
Original Ending e 3 causal

She ‘- flowers growing in the field . She picked a few flowers and --- water.

Premise p Original Condition ¢ Counterfactual Condition ¢’ ® Replace the causal content with
[Mary loved flowers. ] [ She goes to the park. ] [ She goes to the florist. ] blanks, then we get the causal
skeleton.




I OUR APPROACHES
Customize - Counterfacutal Ending Generation with GPT2

Stage2: Customize N
Generated Counterfactual Ending e’

e Ending Generation

[ She --- flowers growing in the building. She bought a few flowers and - -- water.

> pz(yt|ﬂf7y<t) = GPT2($73J<7:)

e ...

&* Counterfactual! P e ; ;
. e Original Condition is not provided.
INPUT | [PRrE] [CON] | ¢ | [SKE] i [END] Endi ! .
______________ [@[Ikll Model can generate consistent
Causal Skeleton k words in
[ She --- flowers growing in the . She a few flowers and -+~ water ] the skeleton.
Premise p Counterfactual Condition ¢’

[Mary loved flowers. ] [ She goes to the florist.




I OUR APPROACHES
Training & Inference

e Training e Inference
1. Sequence labelling -- weighted cross-entropy loss
N 1. Predict the label for each
Lseqg = Z [Alogpi(l; = 0|5) word in the original ending
_N A

+(1 = A)logpi (s = 1/5)]

2. Ending generation - negative log likelihood loss

gen = Zlog[p2 etlpac k e<t)]

Causal Skeleton Augmentation for the Customize stage

1) randomly replacing 20% of background words
with blanks,

2) randomly replacing 20% of background words
with words sampled from the vocabulary,

3) randomly shuffling the order of 20% of

hacl AararnimA warde

l; = argmax py(l;|S)
ll'E{O,l}

2. Merge the consecutive
blanks into one blank and
get the predicted skeleton

3. Generate the

counterfactual ending using

top k sampling

— samgle pa(eilp, k e<t)
etEV



I EXPERIMENTAL RESULTS
Human Evaluation

e S&C-0.8 model get the highest CF score

PRE CF PLOT Avg. o .
ve among all the methods, it is 0.145 higher than

Seq2Seq-GPT 2.558 1.985v  2.170 2.238 SquSeq_ GPT. It can generate more
Random&C 2.572  1.905" 2132 2.203 consistent counterfactual endings.
LCS&C 2.542 2.083 2.145 2.257
S&C-0.5 2.650  1.668" 24257 2248

e TS ST e+ S8C-0.8 outperforms Seq2Seq-GPT on PRE,
Human 5610 2217 2257 2360 it can generate consistent and relevant

endings to the premise.

PRE: Consistency and relevance to the premise. e S&C-0.8 model is evaluated less similar with
CF: Consistency to the counterfactual the original ending compared to Seq2Seq-
condition. GPT baseline because of the copy strategy of
Plot: Similarity to the plot of the original ending. Seq2Seq-GPT.



I EXPERIMENTAL RESULTS
Human Evaluation

PRE CF PLOT Avg.

Seq2Seq-GPT  2.558  1.985% 2.170  2.238
[ Random&C 2572 1.905% 2.132 2203 ]

e Causal skeleton is important.

]S“gz‘ics 3'2:(2) ?'222 T i‘}é; igi; 1) S&C outperform Random&C which
[(S&C-0.8 2590 2.30 2120  2.280 | using

S&C-wio-Aug 24587 2.030  1.8457 2.111 random skeletons.

Human 2610 2217 22527 2360

PRE: Consistency and relevance to the premise.
CF: Consistency to the counterfactual
condition.

Plot: Similarity to the plot of the original ending.



I EXPERIMENTAL RESULTS

Human Evaluation

PRE CF PLOT Avg.
Seq2Seq-GPT 2558  1.985% 2.170  2.238
Random&C 2,572  1.905% 2.132  2.203

[ LCS&C 2542 2083  2.145 2257 |
S&C-0.5 2.650 1.668° 24251 2248

[ S&C-0.8 2590 2130 2.120  2.280 |
S&C-w/o-Aug 2.458% 2.030 1.845% 2111
Human 2610 2217 22527 2360

PRE: Consistency and relevance to the premise.
CF: Consistency to the counterfactual

condition.

Plot: Similarity to the plot of the original ending.

e Causal skeleton is important.

2)
LCS&C

S&C-0.8 behaves similarly to the

which uses LCS skeletons.



I EXPERIMENTAL RESULTS

Human Evaluation

PRE CF PLOT Avg.
Seq2Seq-GPT 2558  1.985% 2.170  2.238
Random&C 2,572 1.905% 2132  2.203
LCS&C 2542 2083  2.145 2257
S&C-0.5 2.650 1.668¢ 2.4257 2248
S&C-0.8 2590 2130 2.120  2.280
S&C-w/o-Aug 2.458% 2.030 1.845% 2111
Human 2610 2217 22527 2360

PRE: Consistency and relevance to the premise.
CF: Consistency to the counterfactual

condition.

Plot: Similarity to the plot of the original ending.

e S&C-0.8 outperforms S&C-0.5 on the CF
metric significantly, A is important for the
task.

1) Help solve the label imbalance problem

2) Higher loss weight causes skeletons
with
more blanks, leaving more spaces for
generation model.



I EXPERIMENTAL RESULTS

Human Evaluation

PRE CF PLOT Avg.
Seq2Seq-GPT  2.558  1.985% 2170  2.238
Randomé&C 2572 1.905% 2.132 2203
LCS&C 2542 2083 2.145 2257
S&C-0.5 2.650 1.668¢ 2.425"7 2248
S&C-0.8 2590 2130 2.120  2.280
S&C-w/o-Aug 2.458% 2.030  1.845% 2.111
Human 2610 2217 22527 2360

PRE: Consistency and relevance to the premise.
CF: Consistency to the counterfactual

condition.

Plot: Similarity to the plot of the original ending.

e Skeleton augmentation is important.

1) S&C-0.8 achieves better scores in all
of
these three aspects than S&C-w/o-
Aug

2) Using only the LCS skeletons to train
the
customize stage leads to overfitting
and
limits model generation capabilities.



I CONCLUSION

e Reuvisit the text generation task in a causal perspective, where the
generated text is split into the background and causal parts, which is
related to the premise and the changed condition respectively;

e Propose a Sketch and Customize framework for improving the causal
reasoning ability of the text generation models;

e Conduct experiments on a counterfactual story rewriting task to verify
the performance of our proposed framework.
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