国际人工智能会议 AAAI 2021论文北京预讲会

## Future-Guided Incremental Transformer for Simultaneous Translation

#### Shaolei Zhang <sup>1,2</sup>, Yang Feng <sup>1,2</sup>\*, Liangyou Li<sup>3</sup>

<sup>1</sup>Key Laboratory of Intelligent Information Processing Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS) <sup>2</sup> University of Chinese Academy of Sciences, Beijing, China <sup>3</sup> Huawei Noah's Ark Lab {zhangshaolei20z, fengyang}@ ict.ac.cn liliangyou@huawei.com

> 张绍磊 2020.12.19

- Simultaneous Translation (ST): starts translations synchronously while reading source sentences.
- The source sentence is incomplete and incremental at every decoding step during translating.
  - Incremental: re-calculation of the all previous hidden states at each decoding step.
  - Incomplete: trade-off between translation quality and latency.



- Wait-k policy:
  - First waits for *k* source tokens, and then translates concurrently with the rest of source sentence.

$$g(t) = \min\{k + t - 1, |\mathbf{x}|\}, t = 1, 2, \cdots$$

• Trained by a "prefix-to-prefix" architecture, and integrates some implicit anticipation.

$$\begin{aligned} e_{ij}^{(t)} &= \begin{cases} \frac{Q(x_i)K(x_j)^T}{\sqrt{d_k}} & \text{if } i, j \leq g\left(t\right) \\ -\infty & \text{otherwise} \end{cases} \\ \alpha_{ij}^{(t)} &= \begin{cases} \frac{\exp e_{ij}^{(t)}}{\sum_{l=1}^n \exp e_{ll}^{(t)}} & \text{if } i, j \leq g\left(t\right) \\ 0 & \text{otherwise} \end{cases} \\ z_i^{(t)} &= \sum_{j=1}^n \alpha_{ij}^{(t)} V\left(x_j\right) \end{aligned}$$

- Weakness of wait-k policy:
  - High complexity :
    - re-calculation of the all previous hidden states at each decoding step, making the computational cost increase quadratically.
    - per-layer complexity of self-attention in wait-k policy is up to  $O(n^3 \cdot d)$
  - Lack of future:
    - acquisition of implicit anticipation through "prefix-to-prefix" training is data-driven, since the training data contains many prefix-pairs in the similar form.
    - inefficient and uncontrollable.



- Avoid high complexity : incremental Transformer
  - a unidirectional encoder.
  - a decoder with an average embedding layer (AEL).
- Enhance the predictive ability: future-guided training
  - encourage the model to embed some future information.
  - simultaneously trained a conventional Transformer for full-sentence NMT as the teacher of incremental Transformer.



- Incremental Transformer:
  - Unidirectional encoder (left-to-right):
    - The newly-appearing source word will not change the hidden states of the previous position.
  - Decoder with Average Embedding Layer (AEL)
    - Make up for the lack of attention to the later tokens.
    - AEL summarize the information of all consumed sources, and add it to the unidirectional hidden states.
    - Do not increase too much complexity.





- Incremental Transformer:
  - Unidirectional encoder (left-to-right)







- Incremental Transformer:
  - Decoder with Average Embedding Layer (AEL)
    - AEL performs an average operation on the input embedding:  $A_i = \frac{1}{i}\sum_{j=1}^i E_j$
    - map **A** from the embed  $f_i = \mathbf{W} A_i$  be to the hidden states

space:

$$h_{ij} = \begin{cases} f_i + z_j & j \le i \\ \mathbf{0} & \text{otherwise} \end{cases}$$

• *f* is added to the hidden states of the tokens have been read in:





- Future-guided training:
  - Knowledge Distillation
    - Introduced a conventional Transformer as the teacher of the incremental Transformer, and apply L<sub>2</sub> regularization term between the hidden states of them:

$$\mathcal{L}\left(\mathbf{z}^{incr}, \mathbf{z}^{full}\right) = \frac{1}{n} \sum_{i=1}^{n} \left\| z_{i}^{incr} - z_{i}^{full} \right\|^{2}$$

Both incremental Transformer and conventional Transformer are trained with cross-entropy loss:

 *L*(θ<sub>incr</sub>) = - ∑<sub>(x,y<sup>\*</sup>)∈D</sub> log p<sub>incr</sub> (y<sup>\*</sup> | (x, θ<sub>incr</sub>))

$$\mathcal{L}(\theta_{full}) = -\sum_{(\mathbf{x}, \mathbf{y}^{\star}) \in D} \log p_{full} \left( \mathbf{y}^{\star} \mid (\mathbf{x}, \theta_{full}) \right)$$

• The total loss is calcule  $\mathcal{L} = \mathcal{L}(\theta_{incr}) + \mathcal{L}(\theta_{full}) + \lambda \mathcal{L}(\mathbf{z}^{incr}, \mathbf{z}^{full})$ 





- Datasets:
  - $\bullet \qquad {\sf Nist} \qquad {\sf Chinese} \to {\sf English}$
  - WMT15 German  $\rightarrow$  English
- Systems:
  - offline model: bi-Transformer, uni-Transformer
  - wait-k policy: baseline(bi), baseline(uni)
  - Heacher: only add a conventional Transformer as the teacher model
  - +AEL: only add average embedding layer we proposed
  - +AEL+Teacher: add both AEL and the conventional Transformer as the teacher model



• Comparison between Joint Training and Pre-training

|                      |                | Teacher | Stu  | ıdent |
|----------------------|----------------|---------|------|-------|
|                      |                | BLEU    | AL   | BLEU  |
| <i>l</i> , 0         | Pre-training   | 45.13   | 9.81 | 40.57 |
| $\kappa - \vartheta$ | Joint training | 44.91   | 9.63 | 41.86 |
| k = 7                | Pre-training   | 45.13   | 7.81 | 39.71 |
|                      | Joint training | 44.88   | 8.11 | 40.73 |
| k = 5                | Pre-training   | 45.13   | 6.50 | 38.39 |
|                      | Joint training | 44.84   | 6.26 | 40.00 |
| k = 3                | Pre-training   | 45.13   | 4.62 | 37.00 |
|                      | Joint training | 44.62   | 4.43 | 38.28 |
| k = 1                | Pre-training   | 45.13   | 2.34 | 32.11 |
|                      | Joint training | 44.58   | 2.32 | 34.20 |

- 1. Jointly training makes the student model get better performance than pre-training.
- 2. The teacher model is for full-sentence MT, while the student model is for ST, and the two have inherent differences in the hidden states distribution.
- 3. Should not let the incremental Transformer learn from the conventional Transformer without any difference, but narrow the distance between them.



- Comparison with baseline
  - The training speed of '+AEL' is about 27.86 times.
  - the training speed of '+AEL+Teacher' is increased by about 13.67 times, and translation quality improves

about 1.88 BLEU on Zh-En and 0.91 BLEU on DeEn (average on different k).

|         |                 | AL    | BLEU  | Δ     |
|---------|-----------------|-------|-------|-------|
| offline | bi-Transformer  | 28.60 | 31.42 |       |
|         | uni-Transformer | 28.70 | 30.12 |       |
|         | baseline(bi)    | 9.36  | 28.48 |       |
| k = 9   | baseline(uni)   | 9.24  | 28.10 |       |
|         | +AEL+Teacher    | 9.25  | 29.42 | +1.32 |
|         | baseline(bi)    | 7.44  | 28.09 |       |
| k = 7   | baseline(uni)   | 7.83  | 27.84 |       |
|         | +AEL+Teacher    | 7.90  | 28.38 | +0.54 |
| k = 5   | baseline(bi)    | 5.58  | 26.38 |       |
|         | baseline(uni)   | 5.78  | 25.73 |       |
|         | +AEL+Teacher    | 5.74  | 26.97 | +1.24 |
| k = 3   | baseline(bi)    | 3.48  | 24.18 |       |
|         | baseline(uni)   | 3.91  | 24.04 |       |
|         | +AEL+Teacher    | 3.95  | 24.39 | +0.35 |
| k = 1   | baseline(bi)    | 1.60  | 18.48 |       |
|         | baseline(uni)   | 1.32  | 18.29 |       |
|         | +AEL+Teacher    | 1.31  | 19.36 | +1.07 |

|         |                 | MT03  | MT04  | MT05  | MT06  | MT08  | AVERAGE |       | •     | Training Time |
|---------|-----------------|-------|-------|-------|-------|-------|---------|-------|-------|---------------|
|         |                 |       |       | BLEU  |       |       | AL      | BLEU  |       | (secs/b)      |
| offling | bi-transformer  | 44.56 | 45.69 | 45.28 | 44.63 | 34.51 | 28.83   | 42.93 |       | 0.31          |
| omine   | uni-transformer | 43.22 | 44.40 | 43.12 | 42.31 | 32.51 | 28.82   | 41.11 |       | 0.31          |
|         | baseline(bi)    | 40.35 | 42.21 | 40.21 | 40.78 | 32.45 | 9.99    | 39.20 |       | 9.92          |
|         | baseline(uni)   | 39.42 | 42.08 | 40.33 | 40.12 | 31.59 | 9.99    | 38.71 |       | 0.31          |
| k = 9   | +AEL            | 40.77 | 42.27 | 40.11 | 40.77 | 32.17 | 10.09   | 39.22 | +0.51 | 0.41          |
|         | +Teacher        | 41.52 | 43.05 | 41.75 | 41.59 | 33.12 | 9.74    | 40.21 | +0.99 | 0.78          |
|         | +AEL+Teacher    | 41.75 | 43.03 | 41.63 | 41.76 | 33.06 | 9.73    | 40.25 | +1.54 | 0.80          |
|         | baseline(bi)    | 40.27 | 41.94 | 39.90 | 40.35 | 31.84 | 8.05    | 38.86 |       | 10.26         |
| k = 7   | baseline(uni)   | 38.79 | 41.12 | 38.77 | 39.13 | 30.61 | 8.01    | 37.68 |       | 0.31          |
|         | +AEL            | 39.81 | 41.66 | 38.81 | 40.14 | 31.16 | 8.17    | 38.32 | +0.63 | 0.41          |
|         | +Teacher        | 40.51 | 41.81 | 40.35 | 40.90 | 32.16 | 8.31    | 39.15 | +1.46 | 0.79          |
|         | +AEL+Teacher    | 40.41 | 42.08 | 40.29 | 40.44 | 32.94 | 8.10    | 39.23 | +1.55 | 0.81          |
|         | baseline(bi)    | 40.12 | 41.46 | 39.58 | 40.21 | 31.57 | 6.34    | 38.59 |       | 10.70         |
|         | baseline(uni)   | 37.09 | 39.62 | 37.78 | 37.66 | 29.82 | 6.27    | 36.39 |       | 0.31          |
| k = 5   | +AEL            | 38.74 | 40.11 | 38.36 | 39.04 | 30.30 | 6.06    | 37.31 | +0.92 | 0.41          |
|         | +Teacher        | 39.47 | 40.42 | 38.82 | 39.78 | 30.05 | 6.24    | 37.71 | +1.31 | 0.82          |
|         | +AEL+Teacher    | 40.15 | 41.53 | 39.58 | 40.59 | 31.29 | 5.98    | 38.63 | +2.23 | 0.83          |
| 1       | baseline(bi)    | 37.08 | 39.11 | 36.69 | 37.20 | 28.28 | 4.15    | 35.67 |       | 11.11         |
|         | baseline(uni)   | 35.94 | 36.98 | 34.64 | 34.80 | 26.48 | 4.42    | 33.77 |       | 0.31          |
| k = 3   | +AEL            | 37.40 | 38.72 | 36.64 | 36.59 | 28.06 | 4.11    | 35.48 | +1.71 | 0.41          |
|         | +Teacher        | 37.42 | 38.94 | 37.13 | 37.37 | 29.58 | 4.53    | 36.09 | +2.32 | 0.84          |
|         | +AEL+Teacher    | 38.15 | 38.88 | 37.14 | 37.46 | 28.98 | 4.41    | 36.12 | +2.35 | 0.86          |
|         | baseline(bi)    | 32.67 | 34.51 | 32.55 | 32.04 | 24.79 | 2.45    | 31.31 |       | 15.11         |
|         | baseline(uni)   | 31.99 | 33.75 | 31.47 | 31.56 | 23.86 | 2.71    | 30.53 |       | 0.31          |
| k = 1   | +AEL            | 32.97 | 34.41 | 32.37 | 32.04 | 24.16 | 2.29    | 31.19 | +0.66 | 0.41          |
|         | +Teacher        | 33.95 | 34.51 | 33.07 | 33.17 | 25.14 | 2.35    | 31.97 | +1.44 | 0.84          |
|         | +AEL+Teacher    | 34.21 | 35.10 | 33.11 | 33.72 | 25.19 | 2.37    | 32.27 | +1.74 | 0.86          |

- Impact of the Knowledge Distillation
  - *L*<sub>2</sub> regularization term successfully makes incremental Transformer learn some future information from conventional Transformer.
  - Most of the improvement brought by '+Teacher' comes from the knowledge distillation between the fullsentence / incremental encoder.
     AVG BLEU Δ



|       |               | AVG BLEU | $\Delta$ |
|-------|---------------|----------|----------|
|       | baseline(uni) | 38.71    |          |
| k = 9 | +uni-Teacher  | 39.72    | +1.01    |
|       | +bi-Teacher   | 40.21    | +1.50    |
|       | baseline(uni) | 37.68    |          |
| k = 7 | +uni-Teacher  | 38.95    | +1.27    |
|       | +bi-Teacher   | 39.15    | +1.46    |
|       | baseline(uni) | 36.39    |          |
| k = 5 | +uni-Teacher  | 37.50    | +1.11    |
|       | +bi-Teacher   | 37.71    | +1.32    |
|       | baseline(uni) | 33.77    |          |
| k = 3 | +uni-Teacher  | 36.02    | +2.25    |
|       | +bi-Teacher   | 36.09    | +2.32    |
|       | baseline(uni) | 30.53    |          |
| k = 1 | +uni-Teacher  | 32.08    | +1.55    |
|       | +bi-Teacher   | 31.97    | +1.44    |



- Prediction Accuracy
  - Use GIZA++ to align the tokens between the generated translation and the source sentence.
  - 'Absent' represents the aligned source token has not been read in when generating the target token. The generated target token is implicitly predicted by the model.
  - 'Present' represents the aligned source token has been read in when generating the

|         | k = 1    |          | k = 3    |          | k = 5    |          | k = 7    |          | k = 9    |          |
|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|         | baseline | +Teacher |
| Absent  | 54.88    | 59.82    | 61.34    | 63.26    | 63.54    | 65.38    | 70.72    | 71.80    | 70.48    | 71.57    |
| Present | 82.47    | 83.32    | 84.76    | 85.22    | 85.33    | 86.04    | 85.94    | 86.51    | 86.25    | 86.92    |



#### Conclusion

- Future-guided incremental Transformer
  - Incremental Transformer with AEL:

Accelerate the training speed of the wait-k policy about 28 times, meanwhile attends to all consumed source tokens.

• future-guided training:

Incremental Transformer successfully embeds some implicit future information and has a stronger predictive ability, without adding any latency or parameters in the inference time.



国际人工智能会议 AAAI 2021论文北京预讲会

# THANKS

2020.12.19