Flexible Non-Autoregressive Extractive Summarization with Threshold: How to Extract a Non-Fixed Number of Summary Sentences

贾瑞鹏,曹亚男,石海超,方芳,尹鹏飞,王石

中国科学院信息工程研究所中国科学院计算技术研究所

Background

- 我们进入了一个信息爆炸的时代,据 IDC 统计,互联网数据量已经达到 ZB 级别
 - bit, Byte, KB, MB, GB, TB, PB, EB, ZB, BB

生活中无处不在的语音文字!

人工难以应对的数据"灾难"!

Background

海量数据中隐含着巨大的安全威胁,包括反动言论、恶意评论、黄色内容等。由于数据规模大、结构复杂、形式多样,导致系统自动检测准确率较低,这就要求专业人员对内容进行人工审核,这是一个耗时耗力的过程

图2 互联网内容安全检测 - 传统方案

Background

• 借助自动摘要技术,可以让机器深入理解、分析海量 Web 数据,自动生成文本的摘要,降低了内容审查的复杂度,在提升系统检测准确率的同时能够大大降低人工成本,在信息检索、内容过滤、舆情分析、态势感知等领域具有较高的研究价值和应用需求

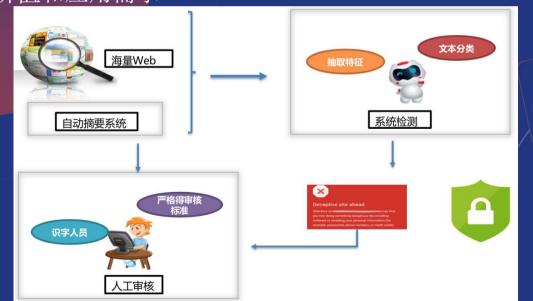


图3 互联网内容安全检测 - 借助自动文摘方案

Summarization

· 文本摘要是指利用计算机自动的从原始文档中提取/生成能够准确反映该文档中心内容的简单连贯短文

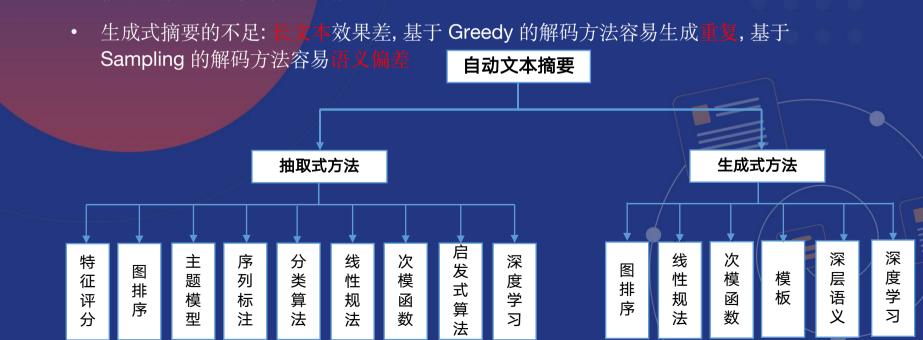
- 按照文档数量: 单文档自动文摘 / 多文档自动文摘
- 按照生成方法: 抽取式自动文摘 / 生成式自动文摘
- 按照不同用途: 指示性自动文摘 / 报道性自动文摘
- 按照该是否提供上下文: 面向查询的自动文摘 / 普通的自动文摘
- ...

Summarization

- 目前,自动文摘技术应用无处不在,例如新闻标题、论文摘要、评论摘要、查询式摘要、金融报表、24 小时实时新闻热点等
- 但该课题的研究工作存在众多问题, 现有的自动文摘算法不太成熟, 整体效果还有很大的提升空间

Summarization

- 常见的自动文本摘要算法:
 - 抽取式摘要的不足: 产生的摘要冗余度较高、连贯性较低



Deep Learning for Extractive Summarization

- 文摘领域常用的数据集包括: CNN/DM, NYT, Gigaword
- 抽取式文摘常用技巧:
 - 基于贪心算法将人工摘要转换为原文句子的 0/1 标签 (Nallapati, 2017)
 - Trigram-Blocking (Liu, 2019)

Deep Learning for Extractive Summarization

- 研究目标: 解决目前基于深度学习抽取式摘要中的一些常见的问题
 - 1. 抽取的句子之间存在大量的冗余信息,但现在常用的方法是 Trigram-Blocking 算法消除冗余的方法与实际情况不符;例如:在 CNN/DM 测试集中
 - 7.35%的 Oracle Summary 中存在 Trigram-Overlaps
 - 0% 的基于 Trigram-Blocking 算法抽取的 Summary 中存在 Trigram-Overlaps
 - 2. 常见的基于深度学习的抽取式方法都采用 Top-K 策略来抽取句子

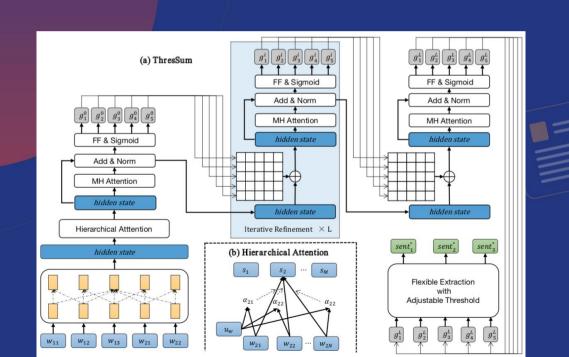
Deep Learning for Extractive Summarization

• 研究内容:

- 针对被抽取句子间的冗余信息,采用预标签+迭代更新的网络模型
- 针对 Top-K 的抽取测略, 采用基于 Threshold 的方法来增加抽取文摘句子的灵活性

ThresSum

• 模型架构



ThresSum

• 知识蒸馏算法获得软标签

Algorithm 1: Teacher Algorithm for Soft Labels Initialize Sentence Set $D = \{s_1, ..., s_M\}$; Initialize ROUGE $r_1, ... r_M$, and Iteration Steps L;

Sort D by $r_1,...,r_M$ in descending order; for l from 0 to L-1 do

Set the Temperature T as L - l; for t from T to 1 do

> Temporary Sentence Set: $D_{temp} \leftarrow \{\}$; Temporary ROUGE of D_{temp} : $R_{temp} \leftarrow 0$; **for** s_i from D[0] to D[end] **do** $D_{temp} \leftarrow D_{temp} + s_i$;

if $R_{temp} \leftarrow D_{temp} + s_i$, if R_{temp} is increasing then $\mid D \leftarrow D - s_i$ else $\mid D_{temp} \leftarrow D_{temp} - s_i$;

end

Set the Sentence s in D_{temp} with Soft Label $\frac{t}{T}$;

end

Set the Sentence s Remained in D with Label 0;

Record these Soft Labels as $(y_1^l, y_2^l, ..., y_M^l)$;

Re-Initialize Sentence Set $D = \{s_1, ..., s_M\}$; Re-Sort D by $r_1, ..., r_M$ in descending order;

end

Experiments

实验结果

Models	CNN/DM			NYT		
	R-1	R-2	R-L	R-1	R-2	R-L
Abstractive						
ABS (2015)	35.46	13.30	32.65	42.78	25.61	35.26
PGC (2017)	39.53	17.28	36.38	43.93	26.85	38.67
TransformerABS (2017)	40.21	17.76	37.09	45.36	27.34	39.53
$T5_{Large}$ (2019)	43.52	21.55	40.69	-	-	-
BART _{Large} (2019b)	44.16	21.28	40.90	48.73	29.25	44.48
$PEGASUS_{Large}$ (2019b)	44.17	21.47	41.11	-	-	-
ProphetNet _{Large} (2020)	44.20	21.17	41.30	-	7.2	~
Extractive						
Oracle (Sentence)	55.61	32.84	51.88	64.22	44.57	57.27
Lead-3 †	40.42	17.62	36.67	41.80	22.60	35.00
SummaRuNNer [†] ★ (2017)	39.60	16.20	35.30	42.37	23.89	38.74
Exconsumm $^{\ddagger} \star (2019)$	41.7	18.6	37.8	43.18	24.43	38.92
PNBERT _{Base} † \star (2019a)	42.69	19.60	38.85	_	-	-
DiscoBERT _{Base} (2020)	43.77	20.85	40.67	_	-	_
BERTSUMEXT _{Large} $\dagger \star (2019)$	43.85	20.34	39.90	48.51	30.27	44.65
$MATCHSUM_{Base} \stackrel{\ddagger}{\star} \star (2020)$	44.41	20.86	40.55	_	-	-
ThresSum _{Large} ‡ \bullet (Ours)	44.59	21.15	40.76	50.08	31.77	45.21

Future

• 1. 优化基于 Greedy 的文本解码算法, 减少重复性, 增加多样性

• 2. 常见的 TextRank 的无监督文本摘要算法目前有很多的弊端, 研究一种全新的无监督摘要框架

国际人工智能会议 AAAI 2021 论文北京预讲会

THANKS

2020.12.19

