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News Recommendation

* Online news websites provide convenient access to news
information
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* Thousands of news generated everyday will overwhelm users

* Personalized news recommender systems are very important

» Alleviate information overload
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News Recommendation

 Existing methods make personalized news recommendation
based on users’ news browsing behaviors
» E.g., DKNUI, DANE and NPAE!
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[1] Wang et al. Dkn: Deep knowledge-aware network for news recommendation. WWW 2018: 1835-1844.
[2] Zhu et al. Dan: Deep attention neural network for news recommendation. AAAI. 2019, 33: 5973-5980.
[3] Wu et al. Npa: Neural news recommendation with personalized attention. KDD 2019: 2576-2584.



Unfairness in News Recommendation

» Users with the same sensitive attributes may have similarities in news
browsing behaviors

* E.g., many males may prefer sports news, many females may prefer fashion
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* The model can easily inherit the biases related to sensitive user
attributes
* The recommendation results are heavily influenced by sensitive user attributes
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Fairness-aware Recommendation

* The problems studied in fairness-aware recommendation methods:

* |ltem fairness
* E.g., items from different providers have a fair chance of being recommended

 User fairness
* E.g., provide same rankings to both protected and unprotected user groups
* Methods to achieve user fairness in recommendation
» Rules[1], removing subspace[2], model regularization[3]

* Most of these methods focus on e-commerce scenarios
 Rely on the predicted ratings to derive fairness metrics
* Focus on recommendation accuracy rather than recommendation results
[1] Farnadi et al. A fairness-aware hybrid recommender system. FATREC 2018.

[2] Zhu et al. Fairness-aware tensor-based recommendation. CIKM 2018.
[3] Yao et al. Beyond parity: Fairness objectives for collaborative filtering. NIPS 2017.



Fairness-aware Deep Learning

» Adversarial learning has been used for fairness-aware machine
learning to remove sensitive attributes from representations
« E.g., [1] and [2]
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 The discriminator decision space may have shifts with the attribute
space
[1]wadhersensitseatd ripste Simgtyameisdg Baltynd:enoniedion to recidivism prediction. FAT/ML
2018.



Problem Definition

* News Recommendation
A target user u with a sensitive attribute z
» A set of clicked news articles
A set of candidate news
 Predict the click scores of candidate news for ranking

 Unfairness

* If the sensitive user attribute z can be predicted from the top K ranking result
more accurately, the recommendation result is more unfair



Fairness-aware news recommendation (FairRec)

» Decomposed adversarial learning
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Fairness-aware news recommendation (FairRec)

* News Recommendation Loss
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Fairness-aware news recommendation (FairRec)
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Fairness-aware news recommendation (FairRec)

 Adversarial Loss
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Fairness-aware news recommendation (FairRec)

* Orthogonality Regularization Loss
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Experiments

» Dataset
* 10,000 users and their news browsing behaviors (from 12/13/2019 to
01/12/2020)
» Gender as the sensitive attrubute
R e o 10000 v, fwords pernews Glle 11,25 1,
41'."-_'55 #Lhdued news IuLx 503,698
#impruﬁsiuns 360428  #non-clicked news logs 9,970,795
« Settings
» Loss coefficients: Lo =L, =Lp= 0.5
* Metrics:

 News recommendation: AUC, MRR, nDCG@5, nDCG@10 scores
e Fairness: using the attribute prediction performance (accuracy and Macro-F



Experiments

 Fairness performance evaluation
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Experiments

« Recommendation performance evaluation
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Experiments

« Effectiveness of decomposed adversarial learning
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Experiments

» Hyperparameter Analysis
« Select Agunder Ap=A, =0
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Experiments

» Hyperparameter Analysis
» Select Apunder A;=10.5, A, =0
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Experiments

» Hyperparameter Analysis
» Select Ay, under A; = 0.5, A, =10.5
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Experiments

) Best
« Case study
Cowboys WR Allen Hurns gets encouraging news after injury

The Biggest Fashion Trends of 2019 Are Here — Can You Handle 1t?

winners

Candidate News

2019 Golden Globes Best Actress 0

Report: Mike Mccarthy only pursuing Jets coaching vacancy

9 Ravens who could be potential salary cap casualties this offseason

FairRec for a male and a female user. The clicked candidate
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