国际人工智能会议 AAAI 2021 论文北京预讲会

Graph Heterogeneous Multi-Relational Recommendation

Chong Chen, Min Zhang

Department of Computer Science and Technology, Tsinghua University

Background (1): Users' Sparse Feedback Information

- RecSys has become a major monetization tool for customer-oriented online services
 - E.g., E-commerce, News Portal, Social Networks, etc.
- Users usually rate or click a small set of items compared to hundreds of millions of items in the system
 - Sparse
 - Positive-unlabeled data

Background (2): Multi-relational Recommendation

- Multi-relational recommendation
 - Heterogeneous interactions between user and item (view, click, cart, purchase).
 - In addition to the target behavior, other behavior data also provides well-structured information and can be used for high-quality recommendation.

Preliminary: Graph Convolutional Networks

- Most existing research on graph convolutional networks are focused on learning representations of nodes in simple undirected graphs. $\mathbf{E} = \sigma(\hat{\mathbf{A}}\mathbf{E}^{(0)}\mathbf{W})$
- For capturing high-hop dependencies in the graph, several GCN layers can be stacker $\mathbf{E}^{(l)} = \sigma(\hat{\mathbf{A}}\mathbf{E}^{(l-1)}\mathbf{W}^{(l)})$
- For a relational graph $\mathbf{E}^{(l)} = \sigma(\hat{\mathbf{A}}\mathbf{E}^{(l-1)}\mathbf{W}_r^{(l)})$ and GCN formulation is as follows
- This formulation leads to over-parameterization and embeds only nodes in the graph.

Graph Heterogeneous Collaborative Filtering

- A novel neural model named GHCF for multi-relational recommendation.
 - Relation-aware GCN propagation layers to jointly embed both representations of nodes and relations in a graph
 - Efficient non-sampling learning module to achieve more effective and stable model optimization
 - Multi-task prediction

Embedding Propagation Layers

• For node:

$$\mathbf{e}_{u}^{(l)} = \sigma\left(\sum_{(v,r)\in\mathcal{N}(u)}\frac{1}{\sqrt{|\mathcal{N}_{u}||\mathcal{N}_{v}|}}\mathbf{W}_{r}^{(l)}\mathbf{e}_{v}^{(l-1)}\right)$$
$$\mathbf{e}_{u}^{(l)} = \sigma\left(\sum_{(v,r)\in\mathcal{N}(u)}\frac{1}{\sqrt{|\mathcal{N}_{u}||\mathcal{N}_{v}|}}\mathbf{W}^{(l)}\phi(\mathbf{e}_{v}^{(l-1)},\mathbf{e}_{r}^{(l-1)})\right)$$

where

$$\phi(\mathbf{e}_v,\mathbf{e}_r)=\mathbf{e}_v\odot\mathbf{e}_r$$

• For relation:

$$\mathbf{e}_r^{(l)} = \mathbf{W}_{rel}^{(l)} \mathbf{e}_r^{(l-1)}$$

Multi-task Prediction

$$\mathbf{e}_{u} = \sum_{l=0}^{L} \frac{1}{L+1} \mathbf{e}_{u}^{(l)}; \ \mathbf{e}_{v} = \sum_{l=0}^{L} \frac{1}{L+1} \mathbf{e}_{v}^{(l)}; \ \mathbf{e}_{r} = \sum_{l=0}^{L} \frac{1}{L+1} \mathbf{e}_{r}^{(l)}$$

Prediction

$$\hat{y}_{(k)uv} = \mathbf{e}_u^T \cdot diag(\mathbf{e}_{r_k}) \cdot \mathbf{e}_v = \sum_i^d e_{u,i} e_{r_k,i} e_{v,i}$$

$$\mathcal{L}(\Theta) = \sum_{k=1}^{K} \lambda_k \tilde{\mathcal{L}_k}(\Theta) + \mu \|\Theta\|_2^2$$

Efficient Multi-task Learning without San $\tilde{\mathcal{L}}_{k}(\Theta) = \sum_{u \in \mathbf{B}} \sum_{v \in \mathbf{V}_{(u)}^{k+}} \left((c_{v}^{k+} - c_{v}^{k-}) \hat{y}_{(k)uv}^{2} - 2c_{v}^{k+} \hat{y}_{(k)uv} \right) \\ + \sum_{i=1}^{d} \sum_{j=1}^{d} \left((e_{r_{k},i}e_{r_{k},j}) \left(\sum_{u \in \mathbf{B}} e_{u,i}e_{u,j} \right) \left(\sum_{v \in \mathbf{V}} c_{v}^{k-}e_{v,i}e_{v,j} \right) \right)$

Experimental settings

- > Datasets:
- Baselines:
 - ➢ NCF (WWW 17)
 - ENMF (SIGIR 19)
 - LightGCN (SIGIR 20)
 - CMF (WWW 15)
 - MC-BPR (RecSys 16)
 - > NMTR (ICDE 19)
 - EHCF (AAAI 19, our previous work)
- Evaluation methods: HR@K, NDCG@K, K=10, 50, 100

Dataset	#User	#Item	#View	#Add-to-cart	#Purchase
Beibei	21,716	7,977	2,412,586	642,622	304,576
Taobao	48,749	39,493	1,548,126	193,747	259,747

Model Comparisons

Beib	vei	HR@10	HR@50	HR@100	NDCG@10	NDCG@50	NDCG@100
	BPR	0.0437	0.1246	0.2192	0.0213	0.0407	0.0539
Single	NCF	0.0441	0.1562	0.2343	0.0225	0.0445	0.0584
	ENMF	0.0464	0.1637	0.2586	0.0247	0.0484	0.0639
	LightGCN	0.0451	0.1613	0.2495	0.0232	0.0466	0.0611
Heterogeneous	CMF	0.0482	0.1582	0.2843	0.0251	0.0462	0.0661
	MC-BPR	0.0504	0.1743	0.2755	0.0254	0.0503	0.0653
	NMTR	0.0524	0.2047	0.3189	0.0285	0.0609	0.0764
	EHCF	0.1523	0.3316	0.4312	0.0817	0.1213	0.1374
	GHCF	0.1922**	0.3794**	0.4711**	0.1012**	0.1426**	0.1575**
Taob	ao	HR@10	HR@50	HR@100	NDCG@10	NDCG@50	NDCG@100
Taob	ao BPR	HR@10 0.0376	HR@50 0.0708	HR@100 0.0871	NDCG@10 0.0227	NDCG@50 0.0269	NDCG@100 0.0305
Taob	ao BPR NCF	HR@10 0.0376 0.0391	HR@50 0.0708 0.0728	HR@100 0.0871 0.0897	NDCG@10 0.0227 0.0233	NDCG@50 0.0269 0.0281	NDCG@100 0.0305 0.0321
Taob Single	ao BPR NCF ENMF	HR@10 0.0376 0.0391 0.0398	HR@50 0.0708 0.0728 0.0743	HR@100 0.0871 0.0897 0.0936	NDCG@10 0.0227 0.0233 0.0244	NDCG@50 0.0269 0.0281 0.0298	NDCG@100 0.0305 0.0321 0.0339
Taob Single	ao BPR NCF ENMF LightGCN	HR@10 0.0376 0.0391 0.0398 0.0415	HR@50 0.0708 0.0728 0.0743 0.0814	HR@100 0.0871 0.0936 0.1025	NDCG@10 0.0227 0.0233 0.0244 0.0237	NDCG@50 0.0269 0.0281 0.0298 0.0325	NDCG@100 0.0305 0.0321 0.0339 0.0359
Taob Single	ao BPR NCF ENMF LightGCN CMF	HR@10 0.0376 0.0391 0.0398 0.0415 0.0483	HR@50 0.0708 0.0728 0.0743 0.0814 0.0774	HR@100 0.0871 0.0936 0.1025 0.1185	NDCG@10 0.0227 0.0233 0.0244 0.0237 0.0252	NDCG@50 0.0269 0.0281 0.0298 0.0325 0.0293	NDCG@100 0.0305 0.0321 0.0339 0.0359 0.0357
Taob Single	ao BPR NCF ENMF LightGCN CMF MC-BPR	HR@10 0.0376 0.0391 0.0398 0.0415 0.0483 0.0547	HR@50 0.0708 0.0728 0.0743 0.0814 0.0774 0.0791	HR@100 0.0871 0.0897 0.0936 0.1025 0.1185 0.1264	NDCG@10 0.0227 0.0233 0.0244 0.0237 0.0252 0.0263	NDCG@50 0.0269 0.0281 0.0298 0.0325 0.0293 0.0297	NDCG@100 0.0305 0.0321 0.0339 0.0359 0.0357 0.0361
Taob Single Heterogeneous	ao BPR NCF ENMF LightGCN CMF MC-BPR NMTR	HR@10 0.0376 0.0391 0.0398 0.0415 0.0483 0.0547 0.0585	HR@50 0.0708 0.0728 0.0743 0.0814 0.0774 0.0791 0.0942	HR@100 0.0871 0.0897 0.0936 0.1025 0.1185 0.1264 0.1368	NDCG@10 0.0227 0.0233 0.0244 0.0237 0.0252 0.0263 0.0278	NDCG@50 0.0269 0.0281 0.0298 0.0325 0.0293 0.0297 0.0334	NDCG@100 0.0305 0.0321 0.0339 0.0359 0.0357 0.0361 0.0394
Taob Single Heterogeneous	ao BPR NCF ENMF LightGCN CMF MC-BPR NMTR EHCF	HR@10 0.0376 0.0391 0.0398 0.0415 0.0483 0.0547 0.0585 0.0717	HR@50 0.0708 0.0728 0.0743 0.0814 0.0774 0.0791 0.0942 0.1618	HR@100 0.0871 0.0897 0.0936 0.1025 0.1185 0.1264 0.1368 0.2211	NDCG@10 0.0227 0.0233 0.0244 0.0237 0.0252 0.0263 0.0278 0.0403	NDCG@50 0.0269 0.0281 0.0298 0.0325 0.0293 0.0297 0.0334 0.0594	NDCG@100 0.0305 0.0321 0.0339 0.0359 0.0357 0.0361 0.0394 0.0690

- Performance comparison on three datasets for all methods
- Best Baselines:
 - LightGCN: Single
- EHCF: Heterogeneous GHCF
 - Consistently and significantly outperforms the best baseline

Handling Cold-Start Issue

- GHCF
 - Consistently significantly outperforms the best baseline
 - The effectiveness of leveraging auxiliary behavior to alleviate the data sparsity issue and the strong power of our GHCF model

Ablation Study

- GHCF-P: The variant model of GHCF which utilizes only purchase data.
- GHCF-PV: The variant model of GHCF which utilizes purchase data and view data.
- GHCF-PC: The variant model of GHCF which utilizes purchase data and carting data.

	В	eibei	Taobao		
	HR@100	NDCG@100	HR@100	NDCG@100	
GHCF-1	0.4569	0.1494	0.2473	0.0755	
GHCF-2	0.4636	0.1498	0.2501	0.0778	
GHCF-3	0.4674	0.1551	0.2567	0.0787	
GHCF-4	0.4711	0.1575	0.2599	0.0792	

Conclusion

Novel multitask recommendati on model **Relation-aware** GCN propagation Good performance

- We propose a novel neural model named GHCF for multi-relational recommendation, which uncovers the underlying relationships among heterogeneous useritem interactions and shows multi-task ability to predict various types of user behaviors using one unified model.
- We design relation-aware GCN propagation layers, which jointly embed both representations of nodes (users and items) and relations in a graph to explicitly exploit the collaborative high-hop signals.
- The model consistently outperforms the state-of-theart recommendation methods, especially for cold-start users.

国际人工智能会议 AAAI 2021论文北京预讲会

THANKS

2020.12.19