Learning to Pre-train Graph Neural Networks

Yuanfu Lu1,2, Xunqiang Jiang1, Yuan Fang3, Chuan Shi1

1Beijing University of Posts and Telecommunications
2WeChat Search Application Department, Tencent Inc. China
3Singapore Management University
4Peng Cheng Laboratory, Shenzhen, China
Background

GNNs

- **node-level representation**

 \[
 h_v^l = \Psi(\psi; A, \mathcal{X}, Z)^l \\
 = \text{UPDATE}(h_v^{l-1}, \\
 \text{AGGREGATE}((h_v^{l-1}, h_u^{l-1}, z_{uv}) : u \in \mathcal{N}_v))
 \]

- **graph-level representation**

 \[
 h_g = \Omega(\omega; H^l) = \text{READOUT}(\{h_v^l | v \in \mathcal{V}\})
 \]

Pre-train GNNs

- \(\theta_0\) is pre-trained without accommodating the adaptation in fine-tuning

\[
\theta_0 = \arg \min_\theta \mathcal{L}^{pre}(f_\theta; \mathcal{D}^{pre})
\]

\[
\theta_1 = \theta_0 - \eta \nabla_{\theta_0} \mathcal{L}^{fine}(f_{\theta_0}; \mathcal{D}^{tr})
\]
Motivation

learn how to pre-train
Motivation

Pre-train a GNN model over a graph $\mathcal{G} \in \mathcal{D}^p$

- sample sub-structures \mathcal{D}^f_t for training

 (the training data of a simulated downstream task)

- mimic the evaluation on testing sub-structures \mathcal{D}^e_t

$$\theta_0 = \arg \min_\theta \sum_{G \in \mathcal{D}^p} \mathcal{L}^{pre}(f_{\theta} - \alpha \nabla_{\theta} \mathcal{L}^{pre}(f_{\theta}; \mathcal{D}^{tr}_t); \mathcal{D}^{te}_t)$$

the fine-tuned parameters

(in a similar manner as the fine-tuning step on the downstream task)
L2P-GNN

(a) An Example of Graph

\(G = \{ \mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Z} \} \)

(b) Task Construction

\(\mathcal{T}_G = \{ \mathcal{T}_G^1, \ldots, \mathcal{T}_G^k \} \)

Child Task \(\mathcal{T}_G^c \)

Support Set \(S_G^c \)

Query Set \(Q_G^c \)

\(\theta = \{ \psi, \omega \} \)

Adaptation on support set

\(\theta' = \{ \psi', \omega' \} \)

Optimization on query set

(c) Dual Adaptation in Self-supervised Base Model

Node-level Aggregation \(\Psi(\psi; \mathcal{A}, \mathcal{X}, \mathcal{Z}) \)

Node-level loss on support / query set

Graph-level Pooling \(\Omega(\omega; \mathcal{H}) \)

Graph-level loss on support / query set

Node-level adaptation \(\psi' \leftarrow \psi \)

Graph-level adaptation \(\omega' \leftarrow \omega \)
L2P-GNN

Task Construction

- the pre-training data \(\mathcal{P}_e = \{G_1, G_2, \ldots, G_N\} \)
- A task involving a graph \(T_G = (S_G, Q_G) \)
- **gradient descent** w.r.t. the loss on \(S_G \)
- **optimize** the performance on \(Q_G \)
- simulating the **training and testing** in the fine-tuning step
Self-supervised Base Model

node-level aggregation

\[\mathcal{L}^{\text{node}}(\psi; S_G^c) = \sum_{(u,v) \in S_G^c} - \ln(\sigma(h_u^\top h_v)) - \ln(\sigma(-h_u^\top h_v')) \]

graph-level pooling

\[\mathcal{L}^{\text{graph}}(\omega; S_G) = \sum_{c=1}^{k} - \log(\sigma(h_{S_G^c}^\top h_G)) - \log(\sigma(-h_{S_G^c}^\top h_{G'})) \]

\[\mathcal{L}_{\mathcal{T}_G}(\theta; S_G) = \mathcal{L}^{\text{graph}}(\omega; S_G) + \frac{1}{k} \sum_{c=1}^{k} \mathcal{L}^{\text{node}}(\psi; S_G^c) \]
L2P-GNN

Dual Adaptation

\[\psi' = \psi - \alpha \frac{\partial \sum_{c=1}^{k} \mathcal{L}_{\text{node}}(\psi; S_g)}{\partial \psi} \]

\[\omega' = \omega - \beta \frac{\partial \mathcal{L}_{\text{graph}}(\omega; S_g)}{\partial \omega} \]

\[\theta \leftarrow \theta - \gamma \frac{\partial \sum_{g \in D_{\text{pre}}} \mathcal{L}_{T_g}(\theta'; Q_g)}{\partial \theta} \]

(c) Dual Adaptation in Self-supervised Base Model
Experiments

Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Biology</th>
<th>PreDBLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>#subgraphs</td>
<td>394,925</td>
<td>1,054,309</td>
</tr>
<tr>
<td>#labels</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>#subgraphs for pre-training</td>
<td>306,925</td>
<td>794,862</td>
</tr>
<tr>
<td>#subgraphs for fine-tuning</td>
<td>88,000</td>
<td>299,447</td>
</tr>
</tbody>
</table>

Baselines

- EdgePred to predict the connectivity of node pairs
- DGI to maximize mutual information across the graph’s patch representations
- ContextPred to explore graph structures
- AttrMasking to learn the regularities of node/edge attributes

GNN Architectures

- GCN, GraphSAGE, GAT, GIN
Performance Comparison

Table 2: Experimental results (mean ± std in percent) of different pre-training strategies w.r.t. various GNN architectures. The improvements are relative to the respective GNN without pre-training.

<table>
<thead>
<tr>
<th>Model</th>
<th>Biology</th>
<th>PreDBLP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GCN</td>
<td>GraphSAGE</td>
</tr>
<tr>
<td>No pre-train</td>
<td>63.22±1.06</td>
<td>65.72±1.23</td>
</tr>
<tr>
<td>EdgePred</td>
<td>64.72±1.06</td>
<td>67.39±1.54</td>
</tr>
<tr>
<td>DGI</td>
<td>64.33±1.14</td>
<td>66.69±0.88</td>
</tr>
<tr>
<td>ContextPred</td>
<td>64.56±1.36</td>
<td>66.31±0.94</td>
</tr>
<tr>
<td>AttrMasking</td>
<td>64.35±1.23</td>
<td>64.32±0.78</td>
</tr>
<tr>
<td>L2P-GNN (Improv.)</td>
<td>66.48±1.59</td>
<td>69.89±1.63</td>
</tr>
</tbody>
</table>

- 6.27% and 3.52% improvements compared to the best baseline
- 8.19% and 7.88% gains relative to non-pretrained models
- **negative transfer** harms the generalization of the pre-trained GNNs (e.g., EdgePred and AttrMasking strategies w.r.t. GAT)
Comparative Analysis

whether L2P-GNN narrows the gap between pre-training and fine-tuning?

- Comparation of the pre-trained GNN model before and after fine-tuning
- Centered Kernel Alignment (CKA) similarity between the parameters
 - Smaller similarity, larger changes of model parameters
- Changes in loss and performance (delta loss and RUC-AUC/Micro-F1)
 - Smaller change, more easily achieve the optimal point
Model Analysis

Ablation Study
- L2P-GNN-Node with only node-level adaptation
- L2P-GNN-Graph with only graph-level adaptation

Parameter Analysis
- the number of node- and graph-level adaptation steps \((s, t)\)
- the dimension of node representations
THANKS

2020.12.19

Codes and datasets: https://github.com/rootlu/L2P-GNN