国际人工智能会议 AAAI 2021论文北京预讲会

Learning to Pre-train Graph Neural Networks

Yuanfu Lu^{1,2}, Xunqiang Jiang¹, Yuan Fang³, Chuan Shi¹

¹Beijing University of Posts and Telecommunications ²WeChat Search Application Department, Tencent Inc. China ³Singapore Management University ⁴Peng Cheng Laboratory, Shenzhen, China

Background

GNNs

L node-level representation

```
\begin{split} \mathbf{h}_{v}^{l} = & \Psi(\psi; \mathcal{A}, \mathcal{X}, \mathcal{Z})^{l} \\ = & \mathsf{UPDATE}(\mathbf{h}_{v}^{l-1}, \\ & \mathsf{AGGREGATE}(\{(\mathbf{h}_{v}^{l-1}, \mathbf{h}_{u}^{l-1}, \mathbf{z}_{uv}) : u \in \mathcal{N}_{v}\})) \end{split}
```

▲ graph-level representation

$$\mathbf{h}_{\mathcal{G}} = \Omega(\omega; \mathbf{H}^{l}) = \operatorname{Readout}(\{\mathbf{h}_{v}^{l} | v \in \mathcal{V}\})$$

Pre-train GNNs

 θ_0 is pre-trained without accommodating the adaptation in fine-tuning

 $\theta_0 = \operatorname{arg\,min}_{\theta} \mathcal{L}^{pre}(f_{\theta}; \mathcal{D}^{pre})$

$$\theta_1 = \theta_0 - \eta \nabla_{\theta_0} \mathcal{L}^{fine}(f_{\theta_0}; \mathcal{D}^{tr})$$

Motivation

learn how to pre-train

Motivation

Pre-train a GNN model over a graph $\mathcal{G} \in \mathcal{D}^{e}$

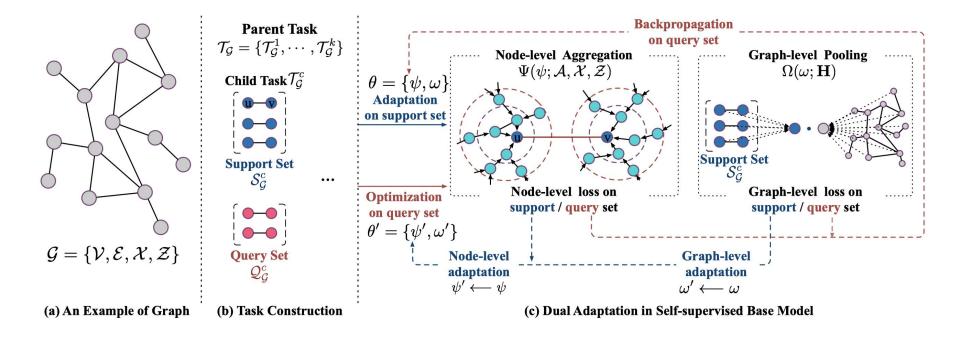
L sample sub-structures D^t_{Γ_g} for training
(*the training data of a simulated downstream task*)
L mimic the evaluation on testing sub-structures D^t_{Γ_g}

$$\theta_0 = \arg\min_{\theta} \sum_{\mathcal{G} \in \mathcal{D}^{pre}} \mathcal{L}^{pre}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}^{pre}(f_{\theta}; \mathcal{D}^{tr}_{\mathcal{T}_{\mathcal{G}}})}; \mathcal{D}^{te}_{\mathcal{T}_{\mathcal{G}}})$$

the fine-tuned parameters

(in a similar manner as the fine-tuning step on the downstream task)

L₂P-GNN



L₂P-GNN

Parent Task $\mathcal{T}_{\mathcal{G}} = \{\mathcal{T}_{\mathcal{G}}^1, \cdots, \mathcal{T}_{\mathcal{G}}^k\}$ $\theta = \{\psi, \omega\}$ Child Task $\mathcal{T}_{\mathcal{G}}^{c}$ Adaptation on support set **Support Set** S_{C}^{c} ... **Optimization** on query set $\theta' = \{\psi', \omega'\}$ $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, \mathcal{X}, \mathcal{Z}\}$ **Query Set** Q_{C}^{c} (a) An Example of Graph (b) Task Construction

Task Construction

L the pre-training data $D^{pe} = \{G_1, G_2, ..., G_N\}$ **L** A task involving a graph $T_{G} = (S_{G}, Q_{G})$ ▲ gradient descent w.r.t. the loss on Sg \perp optimize the performance on $Q_{\rm g}$ ⊥ simulating the training and testing in the fine-tuning step

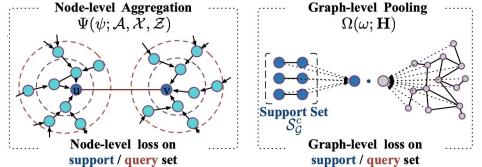
L2P-GNN

Self-supervised Base Model

 $\mathcal{L} \text{ node-level aggregation}$ $\mathcal{L}^{node}(\psi; \mathcal{S}_{\mathcal{G}}^{c}) = \sum_{(u,v) \in \mathcal{S}_{\mathcal{G}}^{c} \\ -\ln(\sigma(\mathbf{h}_{u}^{\top}\mathbf{h}_{v})) - \ln(\sigma(-\mathbf{h}_{u}^{\top}\mathbf{h}_{v'}))$

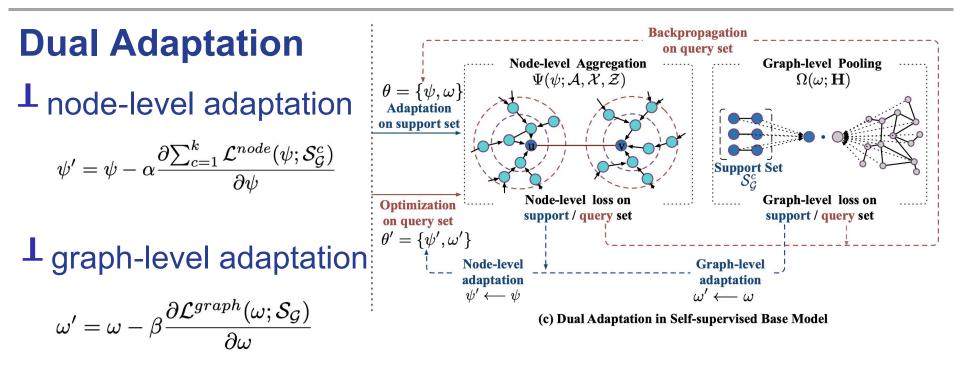
L graph-level pooling

$$\mathcal{L}^{graph}(\omega; \mathcal{S}_{\mathcal{G}}) = \sum_{c=1}^{k} -\log(\sigma(\mathbf{h}_{\mathcal{S}_{\mathcal{G}}^{c}}^{\top} \mathbf{h}_{\mathcal{G}})) - \log(\sigma(-\mathbf{h}_{\mathcal{S}_{\mathcal{G}}^{c}}^{\top} \mathbf{h}_{\mathcal{G}'}))$$



$$\mathcal{L}_{\mathcal{T}_{\mathcal{G}}}(heta; \mathcal{S}_{\mathcal{G}}) = \mathcal{L}^{graph}(\omega; \mathcal{S}_{\mathcal{G}}) + rac{1}{k} \sum_{c=1}^{k} \mathcal{L}^{node}(\psi; \mathcal{S}_{\mathcal{G}}^{c})$$

L2P-GNN



$$\theta \leftarrow \theta - \gamma \frac{\partial \sum_{\mathcal{G} \in \mathcal{D}^{pre}} \mathcal{L}_{\mathcal{T}_{\mathcal{G}}}(\theta'; \mathcal{Q}_{\mathcal{G}})}{\partial \theta}$$

Experiments

A new dataset for GNN pre-train

		\sim
Dataset	Biology	PreDBLP
#subgraphs	394,925	1,054,309
#labels	40	6
#subgraphs for pre-training	306,925	794,862
#subgraphs for fine-tuning	88,000	299,447

¹ Baselines

¹ Datasets

- LedgePred to predict the connectivity of node pairs
- **D**GI to maximize mutual information across the graph's patch representations
- ContextPred to explore graph structures
- AttrMasking to learn the regularities of node/edge attributes

L GNN Architectures

└ GCN, GraphSAGE, GAT, GIN

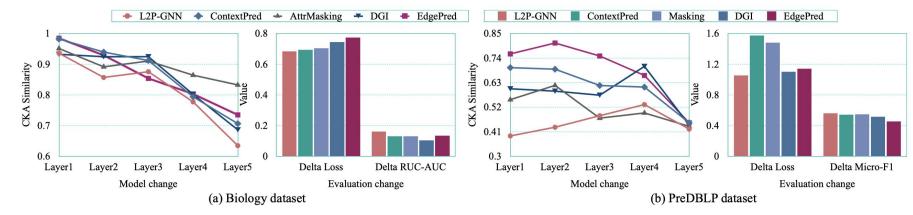
Performance Comparison

Table 2: Experimental results (mean \pm std in percent) of different pre-training strategies w.r.t. various GNN architectures. The improvements are relative to the respective GNN without pre-training.

Model	Biology			PreDBLP				
	GCN	GraphSAGE	GAT	GIN	GCN	GraphSAGE	GAT	GIN
No pre-train	63.22±1.06	65.72±1.23	68.21±1.26	64.82±1.21	62.18±0.43	$61.03 {\pm} 0.65$	59.63±2.32	69.01±0.23
EdgePred	64.72±1.06	67.39±1.54	67.37±1.31	65.93±1.65	65.44 ± 0.42	$63.60 {\pm} 0.21$	55.56 ± 1.67	69.43±0.07
DGI	64.33 ± 1.14	$66.69 {\pm} 0.88$	$68.37 {\pm} 0.54$	65.16 ± 1.24	65.57±0.36	$63.34{\pm}0.73$	$61.30{\pm}2.17$	$69.34 {\pm} 0.09$
ContextPred	64.56 ± 1.36	66.31±0.94	$66.89 {\pm} 1.98$	65.99 ± 1.22	66.11±0.16	$62.55 {\pm} 0.11$	$58.44 {\pm} 1.18$	$69.37 {\pm} 0.21$
AttrMasking	64.35±1.23	$64.32 {\pm} 0.78$	67.72 ± 1.16	65.72±1.31	65.49 ± 0.52	$62.35{\pm}0.58$	53.34 ± 4.77	68.61 ± 0.16
L2P-GNN (Improv.)	66.48±1.59 (5.16%)	69.89 ±1.63 (6.35%)	69.15 ±1.86 (1.38%)	70.13 ±0.95 (8.19%)	66.58±0.28 (7.08%)	65.84 ±0.37 (7.88%)	62.24 ±1.89 (4.38 %)	70.79 ±0.17 (2.58%)

L 6.27% and 3.52% improvements compared to the best baseline
L 8.19% and 7.88% gains relative to non-pretrained models
L negative transfer harms the generalization of the pre-trained GNNs (e.g., EdgePred and AttrMasking strategies w.r.t. GAT)

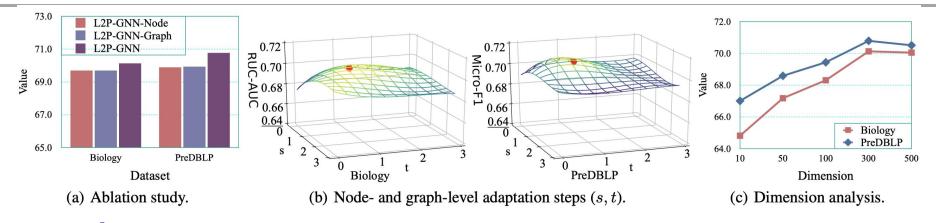
Model Analysis



Comparative Analysis

whether L2P-GNN narrows the gap between pre-training and fine-tuning?
Comparation of the pre-trained GNN model before and after fine-tuning
Centered Kernel Alignment (CKA) similarity between the parameters
L Smaller similarity, larger changes of model parameters
L changes in loss and performance (delta loss and RUC-AUC/Micro-F1)
L Smaller change, more easily achieve the optimal point

Model Analysis



^L Ablation Study

L2P-GNN-Node with only node-level adaptation L2P-GNN-Graph with only graph-level adaptation

¹ Parameter Analysis

the number of node- and graph-level adaptation steps (s, t)
the dimension of node representations

国际人工智能会议 AAAI 2021 论文北京预讲会

THANKS

2020.12.19

Codes and datasets: https://github.com/rootlu/L2P-GNN

