国际人工智能会议 AAAI 2021 论文北京预讲会

An Unsupervised Sampling Approach for Image-Sentence Matching Using Document-Level Structural Information

Zejun Li¹, Zhongyu Wei¹, Zhihao Fan¹, Haijun Shan², Xuanjing Huang³

¹School of Data Science, Fudan University, China

²Zhejiang Lab, China

³School of Computer Science, Fudan University, China

Motivation

- Cross-modality Alignment:
 - Alignment of 2 semantic spaces (a)
 - Image-sentence matching
- Contrastive Learning:
 - Positive: Matched pairs
 - Negative: Hard negative
- Information is needed to find positive/negative pairs:
 - Supervised: labeled pairs (b)
 - Unsupervised

Unsupervised

- Document-level structural information: co-occurrence of images and sentences.
- In (Hessel, Lee, and Mimno 2019):
 - Use document-level information
 - Positive intra-document pairs
 - Negative cross-document pairs
- Effective but introduce a sampling bias.

Sampling Bias

- Cross-document training:
 - The positive and negative sample pairs are <u>easy</u> to distinguish
 - book vs horses
- Intra-document evaluation:
 - The positive and negative sample pairs are <u>hard</u> to distinguish
 - Book A vs Book B;

training and Divatulation ins (Idessel clisse, names Notientword 199) elint kas interded Nonue are negative/positive samples considered d terangres allugations dwith the intershed/eld war agreet invegantages samitples considered during training.

respect to the same sentence, during inter-document Semantic distances between pos/neg images. Training vs Evaluation. Vs Evaluation

Contribution

- An unsupervised strategy:
 - Aiming to alleviate the sampling bias
 - More intra-document pos/neg pairs
- A Transformer based model:
 - Fine-grained features
 - Implicit graph
 - Concepts introduced

Sampling Strategy

Uniform Sampling for Images & Sentences

- 3 different document-level training objectives
- 3 strategies to sample pseudo positive/negative samples (image-sentence pairs).

Cross-Document Objective

• Assumption:

<u>co-occurring</u> image-set and sentence-set are more semantically similar than <u>non-co-</u> <u>occurring</u> ones

• Positive:

intra-document pairs with the highest similarities in original documents

• Negative:

cross-document pairs with the highest similarities in negative documents

Intra-Document Objective

• Assumption:

Similarity of <u>predicted</u> <u>unmatched</u> pairs should be lower than <u>predicted matched</u> imagesentence pairs from the same document

• Positive:

intra-document pairs with the highest similarities in original documents

• Negative:

intra-document pairs with the lowest similarities in negative documents

Dropout Sub-Document Objective

• Assumption:

Images and sentences <u>co-</u> <u>occurring in a "sub-document"</u> should be more similar than <u>non-</u> <u>co-occurring</u> ones

• Positive:

intra-document pairs with the highest similarities in random sub-documents.

• Negative:

cross-document pairs with the highest similarities in negative documents.

Uniform Sampling for Images & Sentences

Cross-modality Alignment Model

• Visual Transformer:

Multi-modal embedding (Faster RCNN/Concept Embedding) + Segment embedding

• Textual Transformer:

Multi-modal embedding (Word Embedding) + Position embedding

Graph Constructed

- Implicit graph: tokens + regions + concepts
 - Visual Transformer: regions---concepts
 - Shared Embedding layer: concepts---tokens (hard matching)

Experiment – Tasks & Datasets

- Multimodal link prediction in multi-sentence multi-image documents formulated in (Hessel, Lee, and Mimno 2019):
 - Metrics: AUC and p@1/5
 - MSCOCO, VIST-DII, VIST-SIS
- Evaluation settings:
 - Unsupervised training with our proposed objective
 - Predict intra-document similarities by the trained model.

Methods for Comparison

- NoStruct:
 - GRU-CNN
 - randomly samples image-caption pairs from a document and treat the similarity between them as the document-level similarity.
- Object Detection:
 - Image: average word2vec embeddings of its top-K ImageNet labels
 - Sentence: average word2vec embeddings of its words
 - no training
- MulLink (Hessel, Lee, and Mimno 2019):
 - Backbone: GRU-CNN
 - trained only with the cross-document objective 1_{C} ,
 - with the sampling bias

Overall Performance

	MSCOCO		Story-DII		Story-SIS	
	AUC	p@1/p@5	AUC	p@1/p@5	AUC	p@1/p@5
Obj Detect	89.5	67.7/45.9	65.3	50.2/35.2	58.4	40.8/28.6
NoStruct	87.4	50.6/34.3	77.0	60.8/46.3	64.5	42.8/33.2
MulLink	99.0	95.0/81.1	82.9	72.0/55.8	68.8	51.8/38.6
Ours	99.3	97.6/86.0	85.5	77.2/60.1	70.2	53.1/39.8

Table 2: Overall performance of different models. Numbers in **bold** denote the best performance in each column.

- MSCOCO:
 - Nearly no bias: MulLink performs well, and the AUC is nearly perfect.
- Story-DII:
 - Similar sentences/images in a document → Bias between training and evaluation
- Story-SIS:
 - Dependency between sentences of the same document (referring pronouns...)

Ablation Study

- Each objective contributes to the performance---all parts of sampled pos/neg pairs are effective.
- Without Transformer, just aggregating the concept features into the image representation does not improve performance (row 2, 3).
- Incorporating concepts into Transformer significantly improves performance on precision (row 1, 2).

backbone	Objectives	AUC	p@1/p@5
1 Ours	C+I+D	85.5	77.2/60.1
2 w/o Concept	C+I+D	85.3	75.8/59.8
3 w/o T	C+I+D	85.1	75.0/59.0
4 w/o T&Concept	C+I+D	85.1	74.6/59.1
5 GRU+CNN	C+I+D	84.0	72.9/58.0
6 Ours	C+I	85.2	75.9/59.2
7 Ours	C+D	85.4	76.2/59.9
8 Ours	I+D	84.1	73.4/57.8
9 Ours	С	85.0	75.5/59.4

Table 3: Ablation study on SIS, the "Objectives" column represents different combinations of objectives used during training, where "C", "I", and "D" correspond to 3 parts of objectives mentioned, respectively. "T" is short for Transformer, w/o means removing a certain module.

Bias Alleviation

- The "spread" hypothesis in (Hessel, Lee, and Mimno 2019):
 - Lower intra-document diversity = larger bias \rightarrow hard
 - OLS regression of intra-document diversity on test AUC
- Trained with more samples (ours):
 - OLS R-square = influence of bias on the performance
 - DII: 42% → 23%
 - SIS: 26% → 12%
 - Bias is less influential \rightarrow alleviated

Comparison with Supervised Methods

Figure 5: Performance of supervised strategy using different proportions of training data, dashed lines denote performances of unsupervised strategies.

Method	AUC	p@1/p@5
1 Transfer from MSCOCO	78.6	66.5/49.5
2 Unsupervised	85.5	77.2/60.1

Table 4: Performance of different methods on DII without explicit labels.

- Utilize more information in a dataset under unsupervised setting.
- Better performance compared with a transfer model.

Case Study

Figure 6: Illustrative documents in DII and SIS: Edges in green are true links in ground-truth; edge widths show the magnitude of edges in \hat{M}_i (only positive weights are shown). Main detected concepts are listed and *italicized words* are directly involved in sentences. Selected documents are representative because their AUC scores match average AUC in corresponding datasets.

国际人工智能会议 AAAI 2021论文北京预讲会

THANKS

2020.12.19