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Motivation
• Cross-modality Alignment:

• Alignment of 2 semantic spaces 
(a)

• Image-sentence matching 

• Contrastive Learning:
• Positive: Matched pairs
• Negative: Hard negative

• Information is needed to find 
positive/negative pairs:

• Supervised: labeled pairs (b)
• Unsupervised



Unsupervised
• Document-level structural information:

 co-occurrence of images and sentences.

• In (Hessel, Lee, and Mimno 2019):
• Use document-level information
• Positive intra-document pairs
• Negative cross-document pairs

• Effective but introduce a sampling 
bias.



Sampling Bias
• Cross-document training:

• The positive and negative sample 
pairs are easy to distinguish 

• book vs horses

• Intra-document evaluation:
• The positive and negative sample 

pairs are hard to distinguish
• Book A vs Book B;

Figure 2: Illustration of positive and negative samples for 
training and evaluation in (Hessel, Lee, and Mimno 2019): 
links in red/blue are negative/positive samples considered 
during evaluation, while links in yellow are negative 
samples considered during training.

Figure 3: Distributions of L2 distances between pre-
trained CNN
features of ground-truth matched and negative images 
with
respect to the same sentence, during inter-document 
training
and intra-document evaluation.Semantic distances between pos/neg images:                Training   vs   Evaluation



Contribution
• An unsupervised strategy:

• Aiming to alleviate the sampling bias
• More intra-document pos/neg pairs

• A Transformer based model:
• Fine-grained features
• Implicit graph
• Concepts introduced



Sampling Strategy

• 3 different document-level training objectives
• 3 strategies to sample pseudo positive/negative samples (image-sentence 

pairs).



Cross-Document Objective

• Assumption: 
co-occurring image-set and 
sentence-set are more 
semantically similar than non-co-
occurring ones

• Positive: 
intra-document pairs with the 
highest similarities in original 
documents

• Negative: 
cross-document pairs with the 
highest similarities in negative 
documents



Intra-Document Objective

• Assumption: 
Similarity of predicted 
unmatched pairs should be lower 
than predicted matched image-
sentence pairs from the same 
document

• Positive:
intra-document pairs with the 
highest similarities in original 
documents

• Negative:
intra-document pairs with the 
lowest similarities in negative 
documents



Dropout Sub-Document Objective

• Assumption: 
Images and sentences co-
occurring in a “sub-document” 
should be more similar than non-
co-occurring ones

• Positive: 
intra-document pairs with the 
highest similarities in random sub-
documents.

• Negative: 
cross-document pairs with the 
highest similarities in negative 
documents.



Cross-modality Alignment Model

• Visual Transformer: 
Multi-modal embedding (Faster RCNN/Concept Embedding) + Segment 
embedding

• Textual Transformer: 
Multi-modal embedding (Word Embedding) + Position embedding



Graph Constructed

• Implicit graph: tokens + regions + concepts
• Visual Transformer: regions---concepts
• Shared Embedding layer: concepts---tokens (hard 

matching)
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Experiment – Tasks & Datasets
• Multimodal link prediction in multi-sentence multi-image 

documents formulated in (Hessel, Lee, and Mimno 2019): 
• Metrics: AUC and p@1/5
• MSCOCO, VIST-DII, VIST-SIS

• Evaluation settings:
• Unsupervised training with our proposed objective 
• Predict intra-document similarities by the trained model.



Methods for Comparison 
• NoStruct: 

• GRU-CNN
• randomly samples image-caption pairs from a document and treat the 

similarity between them as the document-level similarity.
• Object Detection: 

• Image: average word2vec embeddings of its top-K ImageNet labels
• Sentence: average word2vec embeddings of its words
• no training

• MulLink (Hessel, Lee, and Mimno 2019):
• Backbone: GRU-CNN
• trained only with the cross-document objective  ℒ�,  
• with the sampling bias



Overall Performance

• MSCOCO: 
• Nearly no bias: MulLink performs well, and the AUC is nearly perfect.

• Story-DII:
• Similar sentences/images in a document  Bias between training and 

evaluation

• Story-SIS:
• Dependency between sentences of the same document (referring pronouns…)



Ablation Study

• Each objective contributes to the 
performance---all parts of 
sampled pos/neg pairs are 
effective.

• Without Transformer, just 
aggregating the concept features 
into the image representation 
does not improve performance 
(row 2, 3).

• Incorporating concepts into 
Transformer significantly 
improves performance on 
precision (row 1, 2).



Bias Alleviation
• The ”spread” hypothesis in (Hessel, Lee, and Mimno 2019):

• Lower intra-document diversity = larger bias    hard 
• OLS regression of intra-document diversity on test AUC

• Trained with more samples (ours):
• OLS R-square = influence of bias on the performance
• DII: 42%  23%
• SIS: 26%  12%
• Bias is less influential  alleviated



Comparison with Supervised Methods

• Utilize more information in a dataset under unsupervised 
setting.

• Better performance compared with a transfer model.



Case Study
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