国际人工智能会议 AAAI 2021论文北京预讲会

Out-of-Town Recommendation with Travel Intention Modeling

Haoran Xin^{1, 2}, Xinjiang Lu^{2, 3*}, Tong Xu¹, Hao Liu^{2, 3}, Jingjing Gu⁴, Dejing Dou^{2, 3}, Hui Xiong^{5*}

¹University of Science and Technology of China, ²Business Intelligence Lab, Baidu Research

³National Engineering Laboratory of Deep Learning Technology and Application, China

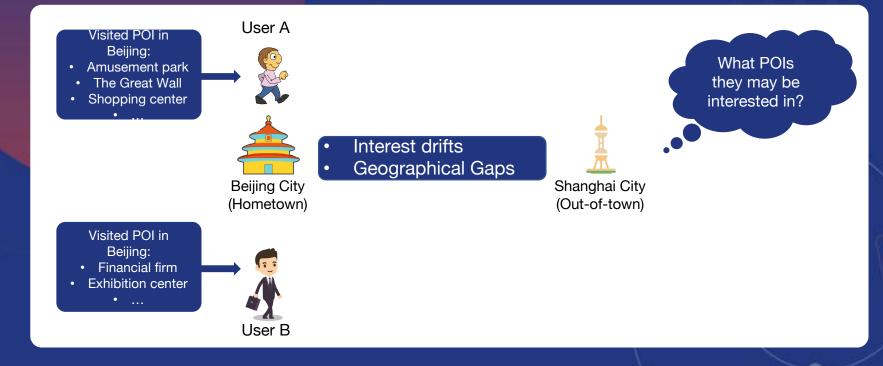
⁴Nanjing University of Aeronautics and Astronautics, ⁵Rutgers University

Outline

- Background & Motivation
- Problem Formulation
- Framework Overview
- The Proposed Approach
- Experiments
- Conclusion

Background & Motivation

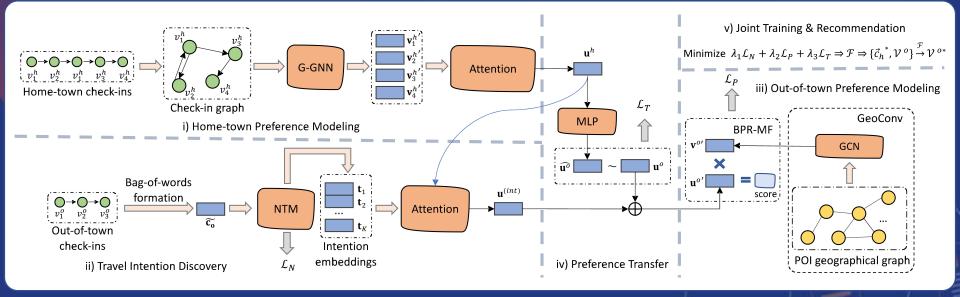
• POI: Point-of-Interest



Problem Formulation

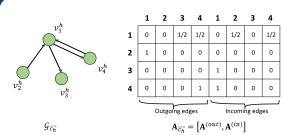
- User set \mathcal{V} , out-of-town POI set \mathcal{V}
- home-town region r, target region r_o , check-in activities c
- Travel behavior set $\mathfrak{T} = \{\tau | \tau = (u, c_h, c_o, r_u, r_o)\}$
- Learn an out-of-town recommender $\mathcal{F}(\cdot)$ by exploring \mathfrak{T} and \mathcal{V}
- For a new coming user $u^* \notin \mathcal{V}, \{c_h, \mathcal{V}\} \xrightarrow{\mathfrak{F}} \mathcal{V}^* (\mathcal{V}^* \subset \mathcal{V})$

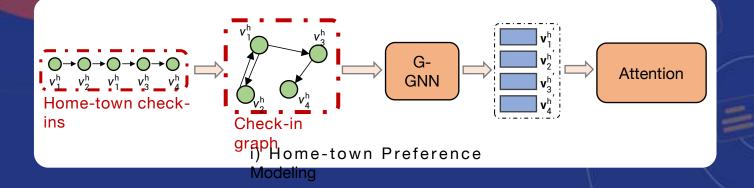
Framework Overview of T_{RAIN}OR



Home-town Preference Modeling

- Home-town check-in graph construction
 - a directed graph \mathfrak{g}_{c_h} for each user
 - The adjacent matrix \mathbf{A}_{ch}^{\Box}





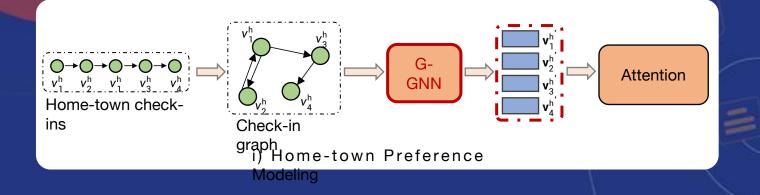
Home-town Preference Modeling

- Home-town POI representation learning with Gated GNN (G-GNN)
 - GRU-like updating steps
 - Obtaining POI representations the user visited

$$\mathbf{a}_{v}^{(t)} = \mathbf{A}_{v:}^{\mathrm{T}} \left[\mathbf{v}_{1}^{h(t-1)}, \mathbf{v}_{2}^{h(t-1)}, \cdots, \mathbf{v}_{D_{1}}^{h} \right]^{\mathrm{T}} + \boldsymbol{b}^{g}, \quad (1)$$
$$\mathbf{z}_{v}^{(t)} = \zeta \left(\mathbf{W}^{z} \mathbf{a}_{v}^{(t)} + \mathbf{U}^{z} \mathbf{v}_{v}^{h(t-1)} \right), \quad (2)$$
$$\mathbf{r}^{(t)} = \zeta \left(\mathbf{W}^{r} \mathbf{a}^{(t)} + \mathbf{U}^{r} \mathbf{v}^{h(t-1)} \right) \quad (3)$$

$$\widetilde{\mathbf{v}_{v}^{h(t)}} = \tanh\left[\overline{\mathbf{W}} \mathbf{a}_{v}^{(t)} + \overline{\mathbf{U}} \left(\mathbf{r}_{v}^{(t)} \odot \mathbf{v}_{v}^{h(t-1)}\right)\right], \quad (4)$$

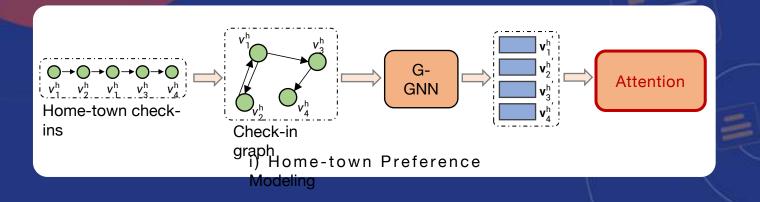
$$\mathbf{v}_{v}^{h(t)} = (1 - \mathbf{z}_{v}^{(t)}) \odot \mathbf{v}_{v}^{h(t-1)} + \mathbf{z}_{v}^{(t)} \odot \widetilde{\mathbf{v}_{v}^{h(t)}}, \quad (5)$$



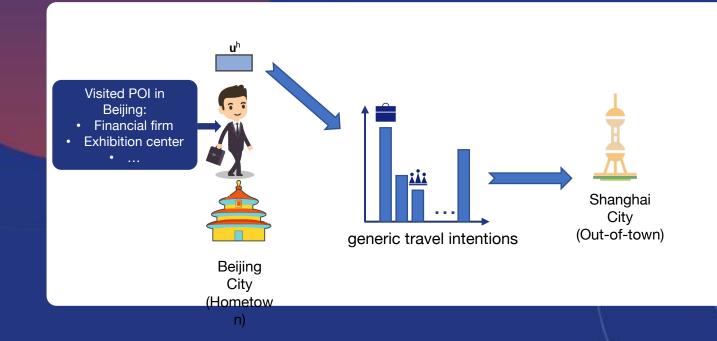
Home-town Preference Modeling

- Home-town preference summarizing
 - Attention network
 - u^h as the user's home-town preference embedding.

$$\begin{split} \mathbf{V}^{h'} &= \left[\mathbf{v}_1^{h'}, \mathbf{v}_2^{h'}, \cdots, \mathbf{v}_{D_1}^{h}' \right] \\ \alpha_i &= \mathbf{q}^{\mathrm{T}} \zeta \left(\mathbf{W}^p \mathbf{v}_i^{h'} + \boldsymbol{b}^p \right) \\ \mathbf{u}^h &= \sum_{i=1}^{D_1} \alpha_i \mathbf{v}_i^{h'} \end{split}$$



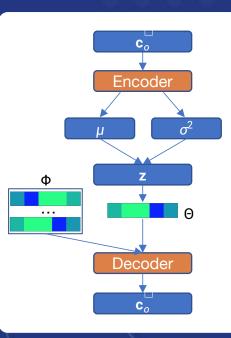
• Understanding travel intentions is very important in out-of-town rec.



- Generic travel intentions uncovering with Neural Topic Model (NTM)
 - K inherent travel intentions
 - Out-of-town POI-intention distribution Φ

 $\Phi_i = \operatorname{softmax}(\mathbf{Et}_i)$

- User's intention distribution Θ by Gaussian Softmax construct
 - Draw a latent variable z from a standard Gaussian distribution: $z \sim \mathcal{N}(0, I)$.
 - Generate the out-of-town intention distribution Θ : Θ = softmax (F_Θ (z)), where F_Θ is a fully connected layer.
 - For the i-th POI in $\tilde{\mathbf{c}_o}$, draw a POI $v_i \sim \Phi^T \Theta$.

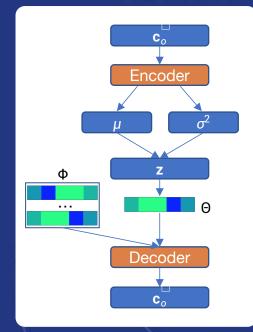


- Generic travel intentions uncovering with Neural Topic Model (NTM)
 - Variational posterior distribution

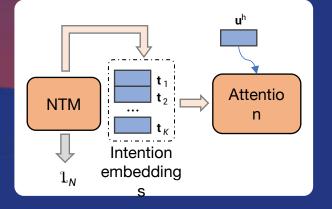
$$q(\mathbf{z}|\widetilde{\mathbf{c}_{o}}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2})$$
$$\boldsymbol{\mu} = F_{\mu} \left(F_{enc} \left(\widetilde{\mathbf{c}_{o}}\right)\right)$$
$$\boldsymbol{\sigma}^{2} = F_{\sigma} \left(F_{enc} \left(\widetilde{\mathbf{c}_{o}}\right)\right)$$

Variational lower bound

$$\begin{split} \mathcal{L}_{N} &= -\sum_{u \in \mathcal{U}} \left[\mathbb{E}_{q(\mathbf{z} | \widetilde{\mathbf{c}_{o}})} \left(\widetilde{\mathbf{c}_{o}}^{\mathrm{T}} \log \left(\Phi^{\mathrm{T}} \Theta \right) \right) \right. \\ &+ \mathbb{D}_{\mathrm{KL}} \left(q\left(\mathbf{z} | \widetilde{\mathbf{c}_{o}} \right) || p\left(\mathbf{z} \right) \right) \right] \end{split}$$



- User-specific travel intention summarizing
 - Different users pay different attentions to these inherent travel intentions.
 - Taking advantage of generic out-of-town intention knowledge.

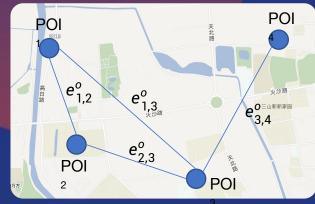


$$eta_i = ext{softmax} \left(\mathbf{t}_i^{\mathrm{T}} \mathbf{W}^t \mathbf{u}^h
ight)$$

 $\mathbf{u}^{(int)} = \sum_{i=1}^K eta_i \mathbf{t}_i$

Out-of-town Preference Modeling

- GeoConv
 - Mining geographical influence
 underlying out-of-town POIs



 $\begin{aligned} & \mathcal{G}_{ge} = (\mathcal{V}, \mathcal{E}^{o}) \\ & e^{o}_{i,j} = \exp(-d\dot{s}t \ (i,j)) \end{aligned}$

$$\mathbf{V}^{o\prime} = \operatorname{ReLU}\left(\mathbf{A}_{geo}\mathbf{V}^{o}\mathbf{W}^{c} + \boldsymbol{b}^{c}\right)$$

 Out-of-town representation learning

•

•

$$\mathbf{u}^{o\prime} = ext{ReLU}\left(\mathbf{W}^f ext{concat}\left(\mathbf{u}^o, \mathbf{u}^{(int)}
ight) + oldsymbol{b}^f
ight)$$

$$s(i,j) = \left(\mathbf{u}_i^{o\prime}\right)^{\mathrm{T}} \mathbf{v}_j^{o\prime}$$

$$\mathcal{L}_P = -\sum_{u \in \mathcal{U}} \sum_{j \in ec{c}_o} \sum_{k \notin ec{c}_o} \log \zeta \left(s(i,j) - s(i,k)
ight)$$

Preference Transfer

- Issues to address
 - Interest drifts
 - Cold-start Problem
- MLP-based non-linear mapping & preference transfer

$$\mathcal{L}_T = \sum_{i \in \mathcal{U}} ||F_{tr}\left(\mathbf{u}_i^h
ight) - \mathbf{u}_i^o||^2$$

(F_{tr} is the MLP-based mapping function)

Joint Training & Recommendation

- Joint training
 - Intention inference loss
 - Preference loss
 - Transfer loss

 $\mathcal{L} = \lambda_1 \mathcal{L}_N + \lambda_2 \mathcal{L}_P + \lambda_3 \mathcal{L}_T$

Recommendation

$$\begin{split} \widehat{\mathbf{u}_{*}^{o}} &= F_{tr}(\mathbf{u}_{*}^{h})\\ \widehat{\mathbf{u}_{*}^{o\prime}} &= \operatorname{ReLU}\left(\mathbf{W}^{f}\operatorname{concat}\left(\widehat{\mathbf{u}_{*}^{o}}, \mathbf{u}_{*}^{(int)}\right) + \boldsymbol{b}^{f}\right)\\ \widehat{s(*, j)} &= \left(\widehat{\mathbf{u}_{*}^{o\prime}}\right)^{\mathrm{T}}\mathbf{v}_{j}^{o\prime} \end{split}$$

Experiments

- Settings
 - We chose three real-world travel behavior datasets including BJ \rightarrow SH, SH \rightarrow HZ and GZ \rightarrow FS, to evaluate our approach.

Dataset		# Users	# POIs	# Check-ins		
BJ→SH	Beijing	10,776	2,111	127,528		
	Shanghai	10,770	1,140	70,794		
SH→HZ	Shanghai	19,997	3,415	263,158		
511-7112	Hangzhou	19,997	1,203	116,475		
GZ→FS	Guangzhou	12,788	4,228	220,006		
	Foshan	12,700	1,225	57,229		

- Baselines
 - TOP, UCF, BPR-MF, GRU4Rec, SR-GNN, LA-LDA, EMCDR
 - Variants of ours: T_{RAIN}OR-I, T_{RAIN}OR-C, T_{RAINOR}-IC
- Evaluation metrics
 - Recall@k (Rec@k) and Mean Average Precision (MAP)

Experiments

Recommendation Performance

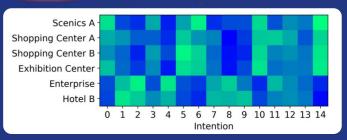
			011			CII	11/7			07	70	
Methods	BJ→SH			SH→HZ			GZ→FS					
Rec@		Rec@20	Rec@30	MAP	Rec@10	Rec@20	Rec@30	MAP	Rec@10	Rec@20	Rec@30	MAP
LA-LDA	0.0160	0.0335	0.0417	0.0151	0.0008	0.0021	0.0028	0.0019	0.0020	0.0036	0.0057	0.0021
UCF	0.0443	0.0700	0.0935	0.1133	0.0628	0.0874	0.0981	0.2577	0.0386	0.0661	0.0800	0.1071
SR-GNN	0.1168	0.1807	0.2627	0.1071	0.2287	0.4550	0.5661	0.2013	0.0933	0.1670	0.2541	0.0566
BPR-MF	0.1768	0.2379	0.2844	0.0901	0.2812	0.3588	0.4116	0.1910	0.1642	0.2545	0.3173	0.0947
TOP	0.2062	0.3103	0.3818	0.1494	0.3713	0.4620	0.5176	0.2896	0.1964	0.2838	0.3483	0.1202
GRU4Rec	0.2091	0.3011	0.3763	0.1438	0.3619	0.4650	0.5150	0.2807	0.1789	0.2742	0.3422	0.1034
EMCDR	0.2163	0.3008	0.3649	0.1553	0.3772	0.4358	0.4732	0.3260	0.1928	0.2770	0.3368	0.1246
TRAINOR-IC	0.2029	0.2880	0.3513	0.1497	0.3679	0.4406	0.4963	0.3020	0.1937	0.2609	0.3178	0.1245
TRAINOR-I	0.2177	0.3084	0.3825	0.1543	0.3825	0.4624	0.5177	0.3016	0.2028	0.2841	0.3449	0.1266
TRAINOR-C	0.2233	0.3194	0.3955	0.1538	0.3914	0.4757	0.5300	0.2950	0.2032	0.2918	0.3569	0.1246
TRAINOR	0.2226	0.3198	0.3938	0.1541	0.3914	0.4768	0.5295	0.2955	0.2039	0.2922	0.3551	0.1246

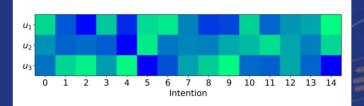
Experiments

- Case study
 - 3 cases with promising Rec@30 from $BJ \rightarrow SH$ dataset.

User	Out-of-town check-ins
u_1	Scenics A, Scenics B,
	Art Gallery, Shopping Center A
u_2	Shopping Center B, Exhibition Center,
	Life Plaza, Shopping Center C, Hotel A
u_3	Enterprise, Hotel B, Hotel C

Visualization





weights of generic intentions for user-specific intentions.

Conclusion

- Study the out-of-town recommendation problem by modeling user's complex travel intention.
- Propose a novel T_{RAIN}OR framework for out-of-town recommendation.
- Validate the effectiveness quantitatively.
- A case study further validate qualitatively.

国际人工智能会议 AAAI 2021论文北京预讲会

THANKS

2020.12.19