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Background & Motivation

Beijing City
(Hometown)

Shanghai City
(Out-of-town)

Leaving for an out-of-town

What POIs 
they may be 

interested in?

Visited POI in 
Beijing:

• Amusement park
• The Great Wall

• Shopping center
• …

Visited POI in 
Beijing:

• Financial firm
• Exhibition center

• …

Leaving for an out-of-town
• Interest drifts
• Geographical Gaps
• Travel intentions

User A

User B

• POI: Point-of-Interest



Problem Formulation

• User set �, out-of-town POI set ��

• home-town region �, target region ��, check-in activities �
• Travel behavior set �= {�|� = (�,  �ℎ, ��, ��, ��)}

• Learn an out-of-town recommender ℱ(⋅) by exploring � and ��

• For a new coming user �∗ ∉ �, {�ℎ, ��}
ℱ
��∗(��∗ ⊂ ��)



Framework Overview of TRAINOR



Home-town Preference Modeling
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i )  H o m e - t o w n  P r e f e r e n c e 
Modeling 

• Home-town check-in graph construction
• a directed graph ��ℎ for each user
• The adjacent matrix ��ℎ



Home-town Preference Modeling
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i )  H o m e - t o w n  P r e f e r e n c e 
Modeling 

• Home-town POI representation 
learning with Gated GNN (G-GNN)
• GRU-like updating steps
• Obtaining POI representations the user 

visited



Home-town Preference Modeling

Check-in 
graph
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Home-town check-
ins

Attention�1
ℎ �2

ℎ �1
ℎ �3

ℎ �4
ℎ

�1
ℎ

�2
ℎ

�3
ℎ

�4
ℎ

�1
ℎ ′

�2
ℎ ′

�3
ℎ ′

�4
ℎ ′

i )  H o m e - t o w n  P r e f e r e n c e 
Modeling 

• Home-town preference summarizing
• Attention network
• �ℎ as the user’s home-town preference 

embedding.



Travel Intention Discovery

• Understanding travel intentions is very important in out-of-town rec.

Visited POI in 
Beijing:

• Financial firm
• Exhibition center

• …

Beijing 
City

(Hometow
n)

Shanghai 
City

(Out-of-town)

�ℎ

generic travel intentions

…



Travel Intention Discovery

• Generic travel intentions uncovering with Neural Topic Model (NTM)
• K inherent travel intentions
• Out-of-town POI-intention distribution Φ

• User’s intention distribution Θ by Gaussian Softmax construction
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Travel Intention Discovery

• Generic travel intentions uncovering with Neural Topic Model (NTM)
• Variational posterior distribution

• Variational lower bound
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Travel Intention Discovery

• User-specific travel intention summarizing
• Different users pay different attentions to these inherent travel intentions.
• Taking advantage of generic out-of-town intention knowledge.
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Out-of-town Preference Modeling

• GeoConv
• Mining geographical influence 

underlying out-of-town POIs

POI
1

POI
2 POI
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• Out-of-town representation 
learning
• Aggregating preference & intention

• Score function

• BPR pairwise loss



Preference Transfer

• Issues to address
• Interest drifts
• Cold-start Problem

• MLP-based non-linear mapping & preference transfer

(��� is the MLP-based mapping function)



Joint Training & Recommendation

• Joint training
• Intention inference loss
• Preference loss
• Transfer loss

• Recommendation



Experiments

• Settings
• We chose three real-world travel behavior datasets including BJ→SH, SH→HZ and 

GZ→FS, to evaluate our approach.

• Baselines
• TOP, UCF, BPR-MF, GRU4Rec, SR-GNN, LA-LDA, EMCDR
• Variants of ours: TRAINOR-I, TRAINOR-C, TRAINOR-IC

• Evaluation metrics
• Recall@k (Rec@k) and Mean Average Precision (MAP)



Experiments

• Recommendation Performance



Experiments

• Case study
• 3 cases with promising Rec@30 from BJ→SH dataset.

• Visualization

reps. POIs over generic intentions. weights of generic intentions for user-specific intentions.



Conclusion

• Study the out-of-town recommendation problem by modeling user’s 
complex travel intention.

• Propose a novel TRAINOR framework for out-of-town recommendation.
• Validate the effectiveness quantitatively.
• A case study further validate qualitatively.
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